
CS/ECE 374 Sec A= Spring 2023
9 Homework 6 :

Due Wednesday, March 8, 2023 at 10am

1. We consider two problems on strings that connect dynamic programming to some of the
previous material on languages and regular expressions.

(a) Let w ∈ Σ∗ be a string. We say that u1, u2, . . . , uh where each ui ∈ Σ∗ is a valid
split of w iff w = u1u2 . . . uh (the concatenation of u1, u2, . . . , uh). Given a language
L ⊆ Σ∗ a string w ∈ L∗ iff there is a valid split u1, u2, . . . , uh of w such that each
ui ∈ L; we call such a split an L-valid split of w. Assume you have access to a
subroutine IsStringInL(x) which outputs whether the input string x is in L or not.
Given w ∈ Σ∗ we would like to find an L-valid split of minimum cost if one exists. We
define the cost of a split u1, u2, . . . , uh as∑h

i=1 cost(|ui|) where cost : Z≥0 → Z≥0 is
a function that is specified as part of the problem and you can assume that cost(0) = 0.
You should assume black box access to a subroutine cost that takes as input a non-
negative integer p as input and outputs cost(p) which we also assume is non-negative.
One can model different objectives via different functions. For instance, if we define
cost(p) = 1 for all p ≥ 1 then finding a minimum cost split is the same as finding the
split with fewest strings in the split. Suppose we define cost() as follows: cost(p) = 0
if p ≤ k and cost(p) =∞ for p > k. Then finding a minimum cost split would enable
us to decide whether there is a split in which each string in the split is of length at
most k. A final example is a cost function where we set cost(p) = 0 if p ≥ k and
cost(p) =∞ for 1 ≤ p < k. This models the situation where we want to find a split
in which each string in the split is of length at least k.
Describe an efficient algorithm that given black box access to the function cost() and
IsStringInL(), and a string w, outputs the value of a minimum cost L-split. If w 6∈ L∗

your algorithm should report this. To evaluate the running time of your solution you
can assume that each call to IsStringInL(x) takes |x| time and that cost() takes O(1)
time.

(b) Let r be a regular expression and w be a string over a finite alphabet, say {0, 1}.
We would like an algorithm that decides whether w ∈ L(r). Describe a recursive
algorithm for this problem. The input to your algorithm is the string w and a
recursive description of r (note that r is either a base case, s + t or st or (s)∗ for
smaller regular expressions). For example, w = 10101010111111000000111111 and
r = (0 + 111)∗(11 + 1000) + (11100 + 01)(10 + 11)∗. For sake of consistency use
the template IsStringInRegExp(w, r) for your function. In your pseudocode you can
use conditionals such as “If r = s + t then” to avoid the low-level details of how the
recursive definition of r is formally specified. You do not need to worry about the
running time of the algorithm or analyze it but the work in your function should be
efficient (polynomial-time) assuming recursive calls take constant time— in particular,
this precludes brute force solutions that do exponential work by enumeration or other
type of ideas. You do not have to answer this part but would your algorithm run in
polynomial time with automatic memoization?

CS/ECE 374 Sec A Homework 6 (due Mar 8) Spring 2023

2. Problem 16 in Jeff’s chapter on DP. https://jeffe.cs.illinois.edu/teaching/algorithms/book/
03-dynprog.pdf. A clarification on the problem: Mr. Fox has to go straight through the
obstacle course and visit each booth exactly once on their way.

3. Not to submit: The McKing chain wants to open several restaurants along Red street in
Shampoo-Banana. The possible locations are at L1, L2, . . . , Ln where Li is at distance mi

meters from the start of Red street. Assume that the street is a straight line and the locations
are in increasing order of distance from the starting point (thus 0 ≤ m1 < m2 < . . . < mn).
McKing has collected some data indicating that opening a restaurant at location Li will
yield a profit of pi independent of where the other restaurants are located. However, the
city of Shampoo-Banana has a zoning law which requires that any two McKing locations
should be D or more meters apart. Describe an algorithm that McKing can use to figure
out the maximum profit it can obtain by opening restaurants while satisfying the city’s
zoning law.

2

https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf

CS/ECE 374 Sec A Homework 6 (due Mar 8) Spring 2023

Solved Problem

5. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three stringsA[1 ..m], B[1 .. n], and C[1 ..m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution: We define a boolean function Shuf(i, j), which is True if and only if the prefix
C[1 .. i + j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j]. This function satisfies the
following recurrence:

Shuf(i, j) =

True if i = j = 0

Shuf(0, j − 1) ∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i− 1, 0) ∧ (A[i] = C[i]) if i > 0 and j = 0(
Shuf(i− 1, j) ∧ (A[i] = C[i + j])

)
∨
(
Shuf(i, j − 1) ∧ (B[j] = C[i + j])

)
if i > 0 and j > 0

We need to compute Shuf(m,n).
We can memoize all function values into a two-dimensional array Shuf[0 ..m][0 .. n].

Each array entry Shuf[i, j] depends only on the entries immediately below and immediately
to the right: Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the array in standard
row-major order. The original recurrence gives us the following pseudocode:

Shuffle?(A[1 ..m], B[1 .. n], C[1 ..m + n]):
Shuf[0, 0]← True
for j ← 1 to n

Shuf[0, j]← Shuf[0, j − 1] ∧ (B[j] = C[j])

for i← 1 to n
Shuf[i, 0]← Shuf[i− 1, 0] ∧ (A[i] = B[i])

for j ← 1 to n
Shuf[i, j]← False
if A[i] = C[i + j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i− 1, j]
if B[i] = C[i + j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i, j − 1]

return Shuf[m,n]

The algorithm runs in O(mn) time. �

3

CS/ECE 374 Sec A Homework 6 (due Mar 8) Spring 2023

Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required. Max
7 points for a slower polynomial-time algorithm; scale partial credit accordingly.

Standard dynamic programming rubric. 10 points divided as follows

3 points for a clear and correct English description of the recursive function you are
trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.)

-1 for naming the function “OPT” or “DP” or any single letter.

– No credit if the description is inconsistent with the recurrence.

– No credit if the description does not explicitly describe how the function value
depends on the named input parameters.

– No credit if the description refers to internal states of the eventual dynamic
programming algorithm, like “the current index” or “the best score so far”.
The function must have a well-defined value that depends only on its input
parameters (and constant global variables).

– An English explanation of the recurrence or algorithm does not qualify. We
want a description of what your function returns, not (here) an explanation of
how that value is computed.

4 points for a correct recurrence, described either using mathematical notation or as
pseudocode for a recursive algorithm.

1 for base case(s). −½ for one minor bug, like a typo or an off-by-one error.

3 for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error.

-2 for greedy optimizations without proof, even if they are correct.

– No credit for the rest of the problem if the recursive case(s) are in-
correct.

3 points for iterative details

+ 1 for describing an appropriate memoization data structure

+ 1 for describing a correct evaluation order; a clear picture is usually sufficient.
If you use nested for loops, be sure to specify the nesting order.

+ 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such
as a subset, partition, subsequence, or tree—an algorithm that computes only the
value or cost of the optimal structure is sufficient for full credit, unless the problem
specifically says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic program-
ming algorithm, but iterative pseudocode is not required for full credit. If
your solution includes iterative pseudocode, you do not need to separately describe
the recurrence, memoization structure, or evaluation order. But you do still need
and English description of the underlying recursive function (or equivalently, the con-
tents of the memoization structure). Perfectly correct iterative pseudocode,
with no explanation or time analysis, is worth at most 6 points out of 10.

• Partial credit for incomplete solutions depends on the running time of the best pos-
sible completion (up to the target running time). For example, consider a solution
that contains only a clear English description of a function, with no recurrence or
iterative details. If the described function can be developed into an algorithm with
the target running time, the solution is worth 3 points; however, if the function leads

4

CS/ECE 374 Sec A Homework 6 (due Mar 8) Spring 2023

to an algorithm that is slower than the target time by a factor of n, the solution
could be worth only 2 points (= 70% of 3, rounded).

5

