CS/ECE 374 Sec A \downarrow Spring 2023
 ค Homework 5 ~

Due Wednesday, March 1, 2023 at 10am

1. Consider n intervals $I_{1}, I_{2}, \ldots, I_{n}$. Each interval I_{i} is specified by its two end points a_{i} and b_{i} with $a_{i} \leq b_{i}$. Two intervals I_{i} and I_{j} overlap if there is a number x such that $x \in\left[a_{i}, b_{i}\right]$ and $x \in\left[a_{j}, b_{j}\right]$. The overlap length between I_{i} and I_{j} is the geometrically natural one the length of the longest interval shared between I_{i} and I_{j}. We can express this overlap length formally as the quantity:

$$
\max \left\{0, \min \left(b_{i}, b_{j}\right)-\max \left(a_{i}, a_{j}\right)\right\}
$$

You may want to draw a picture to see the meaning of the formula. Given the n intervals we wish to find the two intervals I_{i} and I_{j} that have the maximum overlap length. You can assume that the intervals are specified in two arrays A and B of length n where $A[i]=a_{i}$ and $B[i]=b_{i}$. Describe an efficient algorithm for this problem. An $O\left(n^{2}\right)$ algorithm is straight forward. You should aim to beat this easy bound. You may want to first think of the conceptually easier setting where the a_{i} and b_{i} values are distinct. Hint: you can try Mergesort like divide and conquer.
2. Recall the Selection problem: given an unsorted array A of n integers and an index k between 1 and n, output the k th ranked number in the array. We saw a linear time algorithm for it in lecture. In this problem we see two variants of Selection.
(a) Let A be an unsorted arrary of n elements. Suppose we are given h indices $k_{1}<$ $k_{2} \ldots<k_{h}$. Describe an $O(n \log h)$ algorithm to find elements of ranks $k_{1}, k_{2}, \ldots, k_{h}$ in $O(n \log h)$ time. Note that one can use Selection h times to solve this problem in $O(n h)$ time. We can also do this via sorting in $O(n \log n)$ time which is advantageous when h is large. Here we are interested in the intermediate range when h is not too small but smaller than $\log n$. For istance consider $h=\Theta(\log \log n)$. The $O(n h)$-time algorithm will take $O(n \log \log n)$ time while the sorting based algorithm will take $O(n \log n)$ time while the $O(n \log h)$ time algorithm will achieve a running time of $O(n \log \log \log n)$ which is better.
(b) Given 4 sorted arrarys $A_{1}, A_{2}, A_{3}, A_{4}$ with a total of n elements, and an index k between 1 and n, describe an $O(\log n)$ time algorithm to find the k 'th ranked element in the union of the four arrays.
(c) Not to submit: Instead of 4 sorted arrays as in the previous problem, suppose we had h sorted arrays. What running time can you achieve as a function of of h and n ?

You do not need to formally prove the correctness of the algorithms but they should be clear and high-level. You need to justify the running time of your algorithms.
3. Not to submit: A two-dimensional Turing machine (2D TM for short) uses an infinite twodimensional grid of cells as the tape. For simplicity assume that the tape cells corresponds to integers (i, j) with $i, j \geq 0$; in other words the tape corresponds to the positive quadrant of the two dimensional plane. The machine crashes if it tries to move below the $x=0$ line or to the left of the $y=0$ line. The transition function of such a machine has the form $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, U, D, S\}$ where L, R, U, D stand for "left", "right", "up" and "down" respectively, and S stands for "stay put". You can assume that the input to the 2D TM is written on the first row and that its head is initially at location (0,0). Argue that a 2D TM can be simulated by an ordinary TM (1D TM); it may help you to use a multi-tape TM for simulation. In particular address the following points.

- How does your TM store the grid cells of a 2D TM on a one dimensional tape?
- How does your TM keep track of the head position of the 2D TM?
- How does your 1D TM simulate one step of the 2D TM?

If a 2D TM takes t steps on some input how many steps (asymptotically) does your simulating 1D TM take on the same input? Give an asymptotic estimate. Note that it is quite difficult to give a formal proof of the simulation argument, hence we are looking for high-level arguments similar to those we gave in lecture for various simulations.

Solved Problem

4. Suppose we are given two sets of n points, one set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ on the line $y=0$ and the other set $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ on the line $y=1$. Consider the n line segments connecting each point p_{i} to the corresponding point q_{i}. Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in $O(n \log n)$ time. See the example below.

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays $P[1 . . n]$ and $Q[1 . . n]$ of x-coordinates; you may assume that all $2 n$ of these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.

Solution: We begin by sorting the array $P[1 . . n]$ and permuting the array $Q[1 . . n]$ to maintain correspondence between endpoints, in $O(n \log n)$ time. Then for any indices
$i<j$, segments i and j intersect if and only if $Q[i]>Q[j]$. Thus, our goal is to compute the number of pairs of indices $i<j$ such that $Q[i]>Q[j]$. Such a pair is called an inversion.

We count the number of inversions in Q using the following extension of mergesort; as a side effect, this algorithm also sorts Q. If $n<100$, we use brute force in $O(1)$ time. Otherwise:

- Recursively count inversions in (and sort) $Q[1 . .\lfloor n / 2\rfloor]$.
- Recursively count inversions in (and sort) $Q[\lfloor n / 2\rfloor+1 . . n]$.
- Count inversions $Q[i]>Q[j]$ where $i \leq\lfloor n / 2\rfloor$ and $j>\lfloor n / 2\rfloor$ as follows:
- Color the elements in the Left half $Q[1 . . n / 2]$ bLue.
- Color the elements in the Right half $Q[n / 2+1 . . n]$ Red.
- Merge $Q[1$.. $n / 2]$ and $Q[n / 2+1$.. $n]$, maintaining their colors.
- For each blue element $Q[i]$, count the number of smaller red elements $Q[j]$.

The last substep can be performed in $O(n)$ time using a simple for-loop:

```
CountRedBlue (A[1..n]):
    count \(\leftarrow 0\)
    total \(\leftarrow 0\)
    for \(i \leftarrow 1\) to \(n\)
        if \(A[i]\) is red
            count \(\leftarrow\) count +1
        else
            total \(\leftarrow\) total + count
    return total
```

In fact, we can execute the third merge-and-count step directly by modifying the Merge algorithm, without any need for "colors". Here changes to the standard Merge algorithm are indicated in red.

```
MergeAndCount \((A[1 . . n], m)\) :
    \(i \leftarrow 1 ; j \leftarrow m+1\); count \(\leftarrow 0\); total \(\leftarrow 0\)
    for \(k \leftarrow 1\) to \(n\)
        if \(j>n\)
            \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ;\) total \(\leftarrow\) total + count
        else if \(i>m\)
            \(B[k] \leftarrow A[j] ; j \leftarrow j+1 ;\) count \(\leftarrow\) count +1
        else if \(A[i]<A[j]\)
            \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ;\) total \(\leftarrow\) total + count
        else
            \(B[k] \leftarrow A[j] ; j \leftarrow j+1 ;\) count \(\leftarrow\) count +1
    for \(k \leftarrow 1\) to \(n\)
        \(A[k] \leftarrow B[k]\)
    return total
```

We can further optimize this algorithm by observing that count is always equal to $j-m-1$. (Proof: Initially, $j=m+1$ and count $=0$, and we always increment j and count together.)

```
MergeAndCount2 \((A[1 . . n], m)\) :
    \(i \leftarrow 1 ; j \leftarrow m+1 ;\) total \(\leftarrow 0\)
    for \(k \leftarrow 1\) to \(n\)
        if \(j>n\)
            \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ;\) total \(\leftarrow\) total \(+\boldsymbol{j}-\boldsymbol{m}-\mathbf{1}\)
        else if \(i>m\)
            \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
        else if \(A[i]<A[j]\)
            \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ;\) total \(\leftarrow\) total \(+j-\boldsymbol{m}-\mathbf{1}\)
        else
            \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
    for \(k \leftarrow 1\) to \(n\)
        \(A[k] \leftarrow B[k]\)
    return total
```

The modified Merge algorithm still runs in $O(n)$ time, so the running time of the resulting modified mergesort still obeys the recurrence $T(n)=2 T(n / 2)+O(n)$. We conclude that the overall running time is $O(n \log n)$, as required.

Rubric: 10 points $=2$ for base case +3 for divide (split and recurse) +3 for conquer (merge and count) +2 for time analysis. Max 3 points for a correct $O\left(n^{2}\right)$-time algorithm. This is neither the only way to correctly describe this algorithm nor the only correct $O(n \log n)$-time algorithm. No proof of correctness is required.

