1. (a) Prove that the following languages are not regular by providing a fooling set. You need to provide an infinite set and also prove that it is a valid fooling set for the given language. Alternatively, you can describe a fooling set \(F_n \) of size \(n \) for every \(n > 0 \) and prove its validity.

i. \(L = \{0^i 1^j 2^k | i + j = k + 1\} \).

ii. Recall that a block in a string is a maximal non-empty substring of identical symbols. Let \(L \) be the set of all strings in \(\{0, 1\}^*\) that contain two non-empty blocks of \(0s \) of unequal length. For example, \(L \) contains the strings \(011001111 \) and \(00100100111000100 \) but does not contain the strings \(000110001100011 \) and \(00000000111 \).

iii. \(L = \{0^\lceil n \log_2 n \rceil | n \geq 1\} \).

(b) Let \(L_k = \{w \in \{0, 1\}^*: |w| \geq 2k \text{ and last } 2k \text{ characters of } w \text{ have unequal number of } 0s \text{ and } 1s\}. \) If \(k = 3 \) then \(0001111 \) and \(01000110 \) are in \(L_3 \) while \(010011 \) and \(000111000 \) are not. Describe a fooling set for \(L_k \) of size at least \(2^k \) and prove that it is valid.

Not to submit for grading: Design an NFA for \(L_k \) with \(O(k^2) \) states.

(c) Suppose \(L \) is not regular and \(L' \) is a finite language. Prove that \(L \setminus L' \) is not regular. Give a simple example of a non-regular language \(L \) and a regular language \(L' \) such that \(L \setminus L' \) is regular.

2. Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.

(a) \(L = \{a^i b^j c^k d^\ell | i + j = k + \ell\} \)

(b) \(L = \{0^i 1^j 2^k | k = 3(i + j)\} \)

(c) \(L = \{x_1 \# x_2 \# \ldots \# x_k | k \geq 1, \text{each } x_i \in \{0, 1\}^*, \text{and for some } i \text{ and } j, x_i = x_j^R\} \). Note that \(i \) can be equal to \(j \) in the definition and there can be multiple pairs that satisfy the condition. Here the terminal set \(T \) is \(\{0, 1, \#\} \).

(d) \(L = \{0, 1\}^* \setminus \{1^n 0^n | n \geq 0\} \), in other words the complement of the language \(L' = \{1^n 0^n | n \geq 0\} \). Note that \(L' \) is not regular but context free. The complement of a context free language is not necessarily context free, but it is true for this particular language \(L' \).

3. Not to submit: Consider all regular expressions over an alphabet \(\Sigma \). Each regular expression is a string over a larger alphabet \(\Sigma' = \Sigma \cup \{\emptyset\text{-Symbol}, \epsilon\text{-Symbol}, +, (,)\} \). We use \(\emptyset\text{-Symbol} \) and \(\epsilon\text{-Symbol} \) in place of \(\emptyset \) and \(\epsilon \) to avoid confusion with overloading; technically one should do it with \(+, (,) \) as well. Let \(R_\Sigma \) be the language of regular expressions over \(\Sigma \).

(a) Prove that \(R_\Sigma \) is not regular.

(b) Describe a context free grammar (CFG) for \(R_\Sigma \) which will prove that it is a CFL.

This shows that we need more expressive languages than regular languages to describe regular expressions.
Solved problem

4. Let L be the set of all strings over $\{0, 1\}^*$ with exactly twice as many 0s as 1s.

(a) Describe a CFG for the language L.

[Hint: For any string u define $\Delta(u) = \#(0, u) - 2\#(1, u)$. Introduce intermediate variables that derive strings with $\Delta(u) = 1$ and $\Delta(u) = -1$ and use them to define a non-terminal that generates L.]

Solution: $S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00$

(b) Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$.

[Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u) = 1$, what can you say about the smallest i for which $\Delta(u_{\leq i}) = 1$? How does u split up at that position? If $\Delta(u) = -1$, what can you say about the smallest i such that $\Delta(u_{\leq i}) = -1$?]

Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:

Claim 1. $L(G) \subseteq L$, that is, every string in $L(G)$ has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. We need to prove that $\Delta(w) = 0$ for every string $w \in L(G)$.

Let w be an arbitrary string in $L(G)$, and consider an arbitrary derivation of w of length k. Assume that $\Delta(x) = 0$ for every string $x \in L(G)$ that can be derived with fewer than k productions.\(^1\) There are five cases to consider, depending on the first production in the derivation of w.

- If $w = \varepsilon$, then $\#(\varepsilon, w) = \#(1, w) = 0$ by definition, so $\Delta(w) = 0$.
- Suppose the derivation begins $S \rightarrow SS \twoheadrightarrow^* w$. Then $w = xy$ for some strings $x, y \in L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.\(^2\)
- Suppose the derivation begins $S \rightarrow 00S1 \twoheadrightarrow^* w$. Then $w = 00x1$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \rightarrow 1S00 \twoheadrightarrow^* w$. Then $w = 1x00$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \rightarrow 0S1S1 \twoheadrightarrow^* w$. Then $w = 0x1y0$ for some strings $x, y \in L(G)$. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.

In all cases, we conclude that $\Delta(w) = 0$, as required. \(\square\)

Claim 2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 0s as 1s.

\(^1\)Alternatively: Consider the shortest derivation of w, and assume $\Delta(x) = 0$ for every string $x \in L(G)$ such that $|x| < |w|$.

\(^2\)Alternatively: Suppose the shortest derivation of w begins $S \rightarrow SS \twoheadrightarrow^* w$. Then $w = xy$ for some strings $x, y \in L(G)$. Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction hypothesis implies. . . . We need some way to deal with the decompositions $w = \varepsilon \ast w$ and $w = w \ast \varepsilon$, which are both consistent with the production $S \rightarrow SS$, without falling into an infinite loop.
Proof: As suggested by the hint, for any string u, let $\Delta(u) = #(0, u) - 2#(1, u)$. For any string u and any integer $0 \leq i \leq |u|$, let u_i denote the ith symbol in u, and let $u_{\leq i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates every binary string x that is shorter than w and has twice as many 0s as 1s. There are two cases to consider:

- If $w = \epsilon$, then $\epsilon \in L(G)$ because of the production $S \to \epsilon$.
- Suppose w is non-empty. To simplify notation, let $\Delta_i = \Delta(w_{\leq i})$ for every index i, and observe that $\Delta_0 = \Delta_{|w|} = 0$. There are several subcases to consider:
 - Suppose $\Delta_i = 0$ for some index $0 < i < |w|$. Then we can write $w = xy$, where x and y are non-empty strings with $\Delta(x) = \Delta(y) = 0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \to SS$ implies that $w \in L(G)$.
 - Suppose $\Delta_i > 0$ for all $0 < i < |w|$. Then w must begin with 00, since otherwise $\Delta_1 = -2$ or $\Delta_2 = -1$, and the last symbol in w must be 1, since otherwise $\Delta_{|w| - 1} = -1$. Thus, we can write $w = 00x1$ for some binary string x. We easily observe that $\Delta(x) = 0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \to 00S1$ implies $w \in L(G)$.
 - Suppose $\Delta_i < 0$ for all $0 < i < |w|$. A symmetric argument to the previous case implies $w = 1x00$ for some binary string x with $\Delta(x) = 0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \to 1S00$ implies $w \in L(G)$.
 - Finally, suppose none of the previous cases applies: $\Delta_i < 0$ and $\Delta_j > 0$ for some indices i and j, but $\Delta_i \neq 0$ for all $0 < i < |w|$.

 Let i be the smallest index such that $\Delta_i < 0$. Because Δ_j either increases by 1 or decreases by 2 when we increment j, for all indices $0 < j < |w|$, we must have $\Delta_j > 0$ if $j < i$ and $\Delta_j < 0$ if $j \geq i$.

 In other words, there is a unique index i such that $\Delta_{i-1} > 0$ and $\Delta_i < 0$. In particular, we have $\Delta_1 > 0$ and $\Delta_{|w| - 1} < 0$. Thus, we can write $w = 0x1y0$ for some binary strings x and y, where $|0x1| = i$.

 We easily observe that $\Delta(x) = \Delta(y) = 0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \to 0S1S0$ implies $w \in L(G)$.

In all cases, we conclude that G generates w. \qed

Together, Claim 1 and Claim 2 imply $L = L(G)$.

Rubric: 10 points:
- part (a) = 4 points. As usual, this is not the only correct grammar.
- part (b) = 6 points = 3 points for \subseteq + 3 points for \supseteq, each using the standard induction template (scaled).