CS/ECE 374 Sec A \diamond Spring 2023
 ค Homework 4 ~

Due Wednesday, February 15, 2023 at 10am

1. (a) Prove that the following languages are not regular by providing a fooling set. You need to provide an infinite set and also prove that it is a valid fooling set for the given language. Alternatively, you can describe a fooling set F_{n} of size n for every $n>0$ and prove its validity.
i. $L=\left\{0^{i} 1^{j} 2^{k} \mid i+j=k+1\right\}$.
ii. Recall that a block in a string is a maximal non-empty substring of indentical symbols. Let L be the set of all strings in $\{0,1\}^{*}$ that contain two non-empty blocks of 0 s of unequal length. For example, L contains the strings 011001111 and 00100100111000100 but does not contain the strings 000110001100011 and 00000000111.
iii. $L=\left\{0^{\left\lceil n \log _{2} n\right\rceil} \mid n \geq 1\right\}$.
(b) Let $L_{k}=\left\{w \in\{0,1\}^{*}:|w| \geq 2 k\right.$ and last $2 k$ characters of w have unequal number of 0 s and 1 s$\}$. If $k=3$ then 0001111 and 01000110 are in L_{3} while 010011 and 000111000 are not. Describe a fooling set for L_{k} of size at least 2^{k} and prove that it is valid.
Not to submit for grading: Design an NFA for L_{k} with $O\left(k^{2}\right)$ states.
(c) Suppose L is not regular and L^{\prime} is a finite language. Prove that $L \backslash L^{\prime}$ is not regular. Give a simple example of a non-regular language L and a regular language L^{\prime} such that $L \backslash L^{\prime}$ is regular.
2. Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
(a) $L=\left\{a^{i} b^{j} c^{k} d^{\ell} \mid i+j=k+\ell\right\}$
(b) $L=\left\{0^{i} 1^{j} 2^{k} \mid k=3(i+j)\right\}$
(c) $L=\left\{x_{1} \# x_{2} \# \ldots \# x_{k} \mid k \geq 1\right.$, each $x_{i} \in\{0,1\}^{*}$, and for some i and $\left.j, x_{i}=x_{j}^{R}\right\}$. Note that i can be equal to j in the definition and there can be multiple pairs that satisfy the condition. Here the terminal set T is $\{0,1, \#\}$.
(d) $L=\{0,1\}^{*} \backslash\left\{1^{n} 0^{n} \mid n \geq 0\right\}$, in other words the complement of the language $L^{\prime}=\left\{1^{n} 0^{n} \mid n \geq\right.$ $0\}$. Note that L^{\prime} is not regular but context free. The complement of a context free language is not necessarily context free, but it is true for this particular language L^{\prime}.
3. Not to submit: Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a larger alphabet $\Sigma^{\prime}=\Sigma \cup\{\emptyset$-Symbol, ϵ-Symbol, $+,(), *$,$\} . We use \emptyset$-Symbol and ϵ-Symbol in place of \emptyset and ϵ to avoid confusion with overloading; technically one should do it with,$+($,$) as well. Let R_{\Sigma}$ be the language of regular expressions over Σ.
(a) Prove that R_{Σ} is not regular.
(b) Describe a context free grammar (CFG) for R_{Σ} which will prove that it is a CFL.

This shows that we need more expressive languages than regular languages to describe regular expressions.

Solved problem

4. Let L be the set of all strings over $\{0,1\}^{*}$ with exactly twice as many 0 s as 1 s .
(a) Describe a CFG for the language L.
[Hint: For any string u define $\Delta(u)=\#(0, u)-2 \#(1, u)$. Introduce intermediate variables that derive strings with $\Delta(u)=1$ and $\Delta(u)=-1$ and use them to define a non-terminal that generates L.]

Solution: $S \rightarrow \varepsilon|S S| 00 S 1|0 S 1 S 0| 1 S 00$
(b) Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$.
[Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u)=1$, what can you say about the smallest i for which $\Delta\left(u_{\leq i}\right)=1$? How does u split up at that position? If $\Delta(u)=-1$, what can you say about the smallest i such that $\Delta\left(u_{\leq i}\right)=-1$?]

Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:
Claim 1. $L(G) \subseteq L$, that is, every string in $L(G)$ has exactly twice as many $0 s$ as $1 s$.
Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. We need to prove that $\Delta(w)=0$ for every string $w \in L(G)$.

Let w be an arbitrary string in $L(G)$, and consider an arbitrary derivation of w of length k. Assume that $\Delta(x)=0$ for every string $x \in L(G)$ that can be derived with fewer than k productions. ${ }^{1}$ There are five cases to consider, depending on the first production in the derivation of w.

- If $w=\varepsilon$, then $\#(0, w)=\#(1, w)=0$ by definition, so $\Delta(w)=0$.
- Suppose the derivation begins $S \rightsquigarrow S S w^{*} w$. Then $w=x y$ for some strings $x, y \in L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0 .{ }^{2}$
- Suppose the derivation begins $S \rightsquigarrow 00 S 1 w^{*} w$. Then $w=00 x 1$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \leadsto 1 S 00 w^{*} w$. Then $w=1 x 00$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \leadsto 0 S 1 S 1 m^{*} w$. Then $w=0 x 1 y 0$ for some strings $x, y \in L(G)$. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0$.

In all cases, we conclude that $\Delta(w)=0$, as required.
Claim 2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many $0 s$ as $1 s$.

[^0]Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. For any string u and any integer $0 \leq i \leq|u|$, let $\boldsymbol{u}_{\boldsymbol{i}}$ denote the i th symbol in u, and let $\boldsymbol{u}_{\leq i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0 s as 1 s . Assume that G generates every binary string x that is shorter than w and has twice as many 0 s as 1 s . There are two cases to consider:

- If $w=\varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \rightarrow \varepsilon$.
- Suppose w is non-empty. To simplify notation, let $\Delta_{i}=\Delta\left(w_{\leq i}\right)$ for every index i, and observe that $\Delta_{0}=\Delta_{|w|}=0$. There are several subcases to consider:
- Suppose $\Delta_{i}=0$ for some index $0<i<|w|$. Then we can write $w=x y$, where x and y are non-empty strings with $\Delta(x)=\Delta(y)=0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \rightarrow$ SS implies that $w \in L(G)$.
- Suppose $\Delta_{i}>0$ for all $0<i<|w|$. Then w must begin with 00, since otherwise $\Delta_{1}=-2$ or $\Delta_{2}=-1$, and the last symbol in w must be 1 , since otherwise $\Delta_{|w|-1}=$ -1 . Thus, we can write $w=00 x 1$ for some binary string x. We easily observe that $\Delta(x)=0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 00 S 1$ implies $w \in L(G)$.
- Suppose $\Delta_{i}<0$ for all $0<i<|w|$. A symmetric argument to the previous case implies $w=1 x 00$ for some binary string x with $\Delta(x)=0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 1 S 00$ implies $w \in L(G)$.
- Finally, suppose none of the previous cases applies: $\Delta_{i}<0$ and $\Delta_{j}>0$ for some indices i and j, but $\Delta_{i} \neq 0$ for all $0<i<|w|$.

Let i be the smallest index such that $\Delta_{i}<0$. Because Δ_{j} either increases by 1 or decreases by 2 when we increment j, for all indices $0<j<|w|$, we must have $\Delta_{j}>0$ if $j<i$ and $\Delta_{j}<0$ if $j \geq i$.

In other words, there is a unique index i such that $\Delta_{i-1}>0$ and $\Delta_{i}<0$. In particular, we have $\Delta_{1}>0$ and $\Delta_{|w|-1}<0$. Thus, we can write $w=0 \times 1 y 0$ for some binary strings x and y, where $|0 x 1|=i$.

We easily observe that $\Delta(x)=\Delta(y)=0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \rightarrow 0 S 1 S 0$ implies $w \in L(G)$.
In all cases, we conclude that G generates w.
Together, Claim 1 and Claim 2 imply $L=L(G)$.
Rubric: 10 points:

- part $(a)=4$ points. As usual, this is not the only correct grammar.
- part (b) $=6$ points $=3$ points for $\subseteq+3$ points for \supseteq, each using the standard induction template (scaled).

[^0]: ${ }^{1}$ Alternatively: Consider the shortest derivation of w, and assume $\Delta(x)=0$ for every string $x \in L(G)$ such that $|x|<|w|$.
 ${ }^{2}$ Alternatively: Suppose the shortest derivation of w begins $S \leadsto S S m^{*} w$. Then $w=x y$ for some strings $x, y \in L(G)$. Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction hypothesis implies... We need some way to deal with the decompositions $w=\varepsilon \bullet w$ and $w=w \bullet \varepsilon$, which are both consistent with the production $S \rightarrow S S$, without falling into an infinite loop.

