CS/ECE 374 Sec A ↔ Spring 2023

Due Wednesday, February 15, 2023 at 10am

- 1. (a) Prove that the following languages are not regular by providing a fooling set. You need to provide an infinite set and also prove that it is a valid fooling set for the given language. Alternatively, you can describe a fooling set F_n of size n for every n > 0 and prove its validity.
 - i. $L = \{0^i 1^j 2^k \mid i+j=k+1\}.$
 - ii. Recall that a block in a string is a maximal non-empty substring of indentical symbols. Let *L* be the set of all strings in $\{0, 1\}^*$ that contain two non-empty blocks of 0s of unequal length. For example, *L* contains the strings 011001111 and 00100100111000100 but does not contain the strings 000110001100011 and 00000000111.
 - iii. $L = \{0^{\lceil n \log_2 n \rceil} \mid n \ge 1\}.$
 - (b) Let $L_k = \{w \in \{0, 1\}^* : |w| \ge 2k \text{ and last } 2k \text{ characters of } w \text{ have unequal number of 0s and 1s}\}$. If k = 3 then 0001111 and 01000110 are in L_3 while 010011 and 000111000 are not. Describe a fooling set for L_k of size at least 2^k and prove that it is valid. Not to submit for grading: Design an NFA for L_k with $O(k^2)$ states.
 - (c) Suppose *L* is not regular and *L'* is a finite language. Prove that $L \setminus L'$ is not regular. Give a simple example of a non-regular language *L* and a regular language *L'* such that $L \setminus L'$ is regular.
- 2. Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
 - (a) $L = \{a^i b^j c^k d^\ell \mid i+j=k+\ell\}$
 - (b) $L = \{0^i 1^j 2^k \mid k = 3(i+j)\}$
 - (c) $L = \{x_1 \# x_2 \# \dots \# x_k \mid k \ge 1, \text{ each } x_i \in \{0, 1\}^*, \text{ and for some } i \text{ and } j, x_i = x_j^R\}$. Note that i can be equal to j in the definition and there can be multiple pairs that satisfy the condition. Here the terminal set T is $\{0, 1, \#\}$.
 - (d) $L = \{0, 1\}^* \setminus \{1^n 0^n \mid n \ge 0\}$, in other words the complement of the language $L' = \{1^n 0^n \mid n \ge 0\}$. Note that L' is not regular but context free. The complement of a context free language is not necessarily context free, but it is true for this particular language L'.
- Not to submit: Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a larger alphabet Σ' = Σ ∪ {Ø-Symbol, ε-Symbol, +, (,), *}. We use Ø-Symbol and ε-Symbol in place of Ø and ε to avoid confusion with overloading; technically one should do it with +, (,) as well. Let R_Σ be the language of regular expressions over Σ.
 - (a) Prove that R_{Σ} is not regular.
 - (b) Describe a context free grammar (CFG) for R_{Σ} which will prove that it is a CFL.

This shows that we need more expressive languages than regular languages to describe regular expressions.

Solved problem

- 4. Let *L* be the set of all strings over $\{0, 1\}^*$ with exactly twice as many 0s as 1s.
 - (a) Describe a CFG for the language *L*.

[Hint: For any string u define $\Delta(u) = \#(0, u) - 2\#(1, u)$. Introduce intermediate variables that derive strings with $\Delta(u) = 1$ and $\Delta(u) = -1$ and use them to define a non-terminal that generates *L*.]

Solution: $S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00$

(b) Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$.

[Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u) = 1$, what can you say about the smallest i for which $\Delta(u_{\leq i}) = 1$? How does u split up at that position? If $\Delta(u) = -1$, what can you say about the smallest i such that $\Delta(u_{\leq i}) = -1$?]

Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:

Claim 1. $L(G) \subseteq L$, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. We need to prove that $\Delta(w) = 0$ for every string $w \in L(G)$.

Let *w* be an arbitrary string in L(G), and consider an arbitrary derivation of *w* of length *k*. Assume that $\Delta(x) = 0$ for every string $x \in L(G)$ that can be derived with fewer than *k* productions.¹ There are five cases to consider, depending on the first production in the derivation of *w*.

- If $w = \varepsilon$, then #(0, w) = #(1, w) = 0 by definition, so $\Delta(w) = 0$.
- Suppose the derivation begins S → SS →* w. Then w = xy for some strings x, y ∈ L(G), each of which can be derived with fewer than k productions. The inductive hypothesis implies Δ(x) = Δ(y) = 0. It immediately follows that Δ(w) = 0.²
- Suppose the derivation begins $S \rightsquigarrow 00S1 \rightsquigarrow^* w$. Then w = 00x1 for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \rightsquigarrow 1S00 \rightsquigarrow^* w$. Then w = 1x00 for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins S → 0S1S1 →* w. Then w = 0x1y0 for some strings x, y ∈ L(G). The inductive hypothesis implies Δ(x) = Δ(y) = 0. It immediately follows that Δ(w) = 0.

In all cases, we conclude that $\Delta(w) = 0$, as required.

Claim 2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 0s as 1s.

¹Alternatively: Consider the *shortest* derivation of *w*, and assume $\Delta(x) = 0$ for every string $x \in L(G)$ such that |x| < |w|.

²Alternatively: Suppose the *shortest* derivation of *w* begins $S \rightsquigarrow SS \rightsquigarrow^* w$. Then w = xy for some strings $x, y \in L(G)$. Neither *x* or *y* can be empty, because otherwise we could shorten the derivation of *w*. Thus, *x* and *y* are both shorter than *w*, so the induction hypothesis implies.... We need some way to deal with the decompositions $w = \varepsilon \cdot w$ and $w = w \cdot \varepsilon$, which are both consistent with the production $S \rightarrow SS$, without falling into an infinite loop.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. For any string u and any integer $0 \le i \le |u|$, let u_i denote the *i*th symbol in u, and let $u_{\le i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates every binary string x that is shorter than w and has twice as many 0s as 1s. There are two cases to consider:

- If $w = \varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \to \varepsilon$.
- Suppose *w* is non-empty. To simplify notation, let Δ_i = Δ(w_{≤i}) for every index *i*, and observe that Δ₀ = Δ_{|w|} = 0. There are several subcases to consider:
 - Suppose $\Delta_i = 0$ for some index 0 < i < |w|. Then we can write w = xy, where x and y are non-empty strings with $\Delta(x) = \Delta(y) = 0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \to SS$ implies that $w \in L(G)$.
 - Suppose $\Delta_i > 0$ for all 0 < i < |w|. Then *w* must begin with 00, since otherwise $\Delta_1 = -2$ or $\Delta_2 = -1$, and the last symbol in *w* must be 1, since otherwise $\Delta_{|w|-1} = -1$. Thus, we can write w = 00x1 for some binary string *x*. We easily observe that $\Delta(x) = 0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 00S1$ implies $w \in L(G)$.
 - Suppose $\Delta_i < 0$ for all 0 < i < |w|. A symmetric argument to the previous case implies w = 1x00 for some binary string x with $\Delta(x) = 0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 1S00$ implies $w \in L(G)$.
 - Finally, suppose none of the previous cases applies: Δ_i < 0 and Δ_j > 0 for some indices *i* and *j*, but Δ_i ≠ 0 for all 0 < *i* < |*w*|.

Let *i* be the smallest index such that $\Delta_i < 0$. Because Δ_j either increases by 1 or decreases by 2 when we increment *j*, for all indices 0 < j < |w|, we must have $\Delta_i > 0$ if j < i and $\Delta_i < 0$ if $j \ge i$.

In other words, there is a *unique* index *i* such that $\Delta_{i-1} > 0$ and $\Delta_i < 0$. In particular, we have $\Delta_1 > 0$ and $\Delta_{|w|-1} < 0$. Thus, we can write w = 0x1y0 for some binary strings *x* and *y*, where |0x1| = i.

We easily observe that $\Delta(x) = \Delta(y) = 0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \to 0S1S0$ implies $w \in L(G)$.

In all cases, we conclude that *G* generates *w*.

Together, Claim 1 and Claim 2 imply L = L(G).

Rubric: 10 points:

- part (a) = 4 points. As usual, this is not the only correct grammar.
- part (b) = 6 points = 3 points for \subseteq + 3 points for \supseteq , each using the standard induction template (scaled).