
CS/ECE 374 Sec A= Spring 2023

9 Homework 4 :
Due Wednesday, February 15, 2023 at 10am

1. (a) Prove that the following languages are not regular by providing a fooling set. You need to
provide an infinite set and also prove that it is a valid fooling set for the given language.
Alternatively, you can describe a fooling set Fn of size n for every n> 0 and prove its validity.

i. L = {0i1 j2k | i + j = k+ 1}.
ii. Recall that a block in a string is a maximal non-empty substring of indentical symbols.

Let L be the set of all strings in {0,1}∗ that contain two non-empty blocks of 0s of unequal
length. For example, L contains the strings 011001111 and 00100100111000100 but
does not contain the strings 000110001100011 and 00000000111.

iii. L = {0dn log2 ne | n≥ 1}.
(b) Let Lk = {w ∈ {0, 1}∗ : |w| ≥ 2k and last 2k characters of w have unequal number of 0s and 1s}.

If k = 3 then 0001111 and 01000110 are in L3 while 010011 and 000111000 are not. Describe
a fooling set for Lk of size at least 2k and prove that it is valid.
Not to submit for grading: Design an NFA for Lk with O(k2) states.

(c) Suppose L is not regular and L′ is a finite language. Prove that L \ L′ is not regular. Give
a simple example of a non-regular language L and a regular language L′ such that L \ L′ is
regular.

2. Describe a context free grammar for the following languages. Clearly explain how they work and
the role of each non-terminal. Unclear grammars will receive little to no credit.

(a) L = {ai b jckd` | i + j = k+ `}
(b) L = {0i1 j2k | k = 3(i + j)}
(c) L = {x1#x2#. . .#xk | k ≥ 1, each x i ∈ {0,1}∗, and for some i and j, x i = xR

j }. Note that i
can be equal to j in the definition and there can be multiple pairs that satisfy the condition.
Here the terminal set T is {0,1, #}.

(d) L = {0, 1}∗ \ {1n0n | n≥ 0}, in other words the complement of the language L′ = {1n0n | n≥
0}. Note that L′ is not regular but context free. The complement of a context free language
is not necessarily context free, but it is true for this particular language L′.

3. Not to submit: Consider all regular expressions over an alphabet Σ. Each regular expression
is a string over a larger alphabet Σ′ = Σ∪ {;-Symbol,ε-Symbol,+, (,),∗}. We use ;-Symbol and
ε-Symbol in place of ; and ε to avoid confusion with overloading; technically one should do it
with +, (,) as well. Let RΣ be the language of regular expressions over Σ.

(a) Prove that RΣ is not regular.

(b) Describe a context free grammar (CFG) for RΣ which will prove that it is a CFL.

This shows that we need more expressive languages than regular languages to describe regular
expressions.

CS/ECE 374 Sec A Homework 4 (due Feb 15) Spring 2023

Solved problem

4. Let L be the set of all strings over {0,1}∗ with exactly twice as many 0s as 1s.

(a) Describe a CFG for the language L.
[Hint: For any string u define ∆(u) = #(0, u)− 2#(1, u). Introduce intermediate variables
that derive strings with ∆(u) = 1 and ∆(u) = −1 and use them to define a non-terminal that
generates L.]

Solution: S→ ε | SS | 00S1 | 0S1S0 | 1S00 �

(b) Prove that your grammar G is correct. As usual, you need to prove both L ⊆ L(G) and
L(G) ⊆ L.
[Hint: Let u≤i denote the prefix of u of length i. If ∆(u) = 1, what can you say about the
smallest i for which ∆(u≤i) = 1? How does u split up at that position? If ∆(u) = −1, what
can you say about the smallest i such that ∆(u≤i) = −1?]

Solution: We separately prove L ⊆ L(G) and L(G) ⊆ L as follows:

Claim 1. L(G) ⊆ L, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)− 2#(1, u). We need to
prove that ∆(w) = 0 for every string w ∈ L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of length
k. Assume that ∆(x) = 0 for every string x ∈ L(G) that can be derived with fewer than
k productions.1 There are five cases to consider, depending on the first production in the
derivation of w.

• If w= ε, then #(0, w) = #(1, w) = 0 by definition, so ∆(w) = 0.
• Suppose the derivation begins S SS ∗ w. Then w = x y for some strings x , y ∈ L(G),

each of which can be derived with fewer than k productions. The inductive hypothesis
implies ∆(x) =∆(y) = 0. It immediately follows that ∆(w) = 0.2

• Suppose the derivation begins S 00S1 ∗ w. Then w = 00x1 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S 1S00 ∗ w. Then w = 1x00 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S 0S1S1 ∗ w. Then w = 0x1y0 for some strings
x , y ∈ L(G). The inductive hypothesis implies ∆(x) =∆(y) = 0. It immediately follows
that ∆(w) = 0.

In all cases, we conclude that ∆(w) = 0, as required. �

Claim 2. L ⊆ L(G); that is, G generates every binary string with exactly twice as many 0s
as 1s.

1Alternatively: Consider the shortest derivation of w, and assume ∆(x) = 0 for every string x ∈ L(G) such that |x |< |w|.
2Alternatively: Suppose the shortest derivation of w begins S SS ∗ w. Then w = x y for some strings x , y ∈ L(G).

Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w,
so the induction hypothesis implies. . . . We need some way to deal with the decompositions w = ε • w and w = w • ε, which are
both consistent with the production S→ SS, without falling into an infinite loop.

2

CS/ECE 374 Sec A Homework 4 (due Feb 15) Spring 2023

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u) − 2#(1, u). For any
string u and any integer 0≤ i ≤ |u|, let ui denote the ith symbol in u, and let u≤i denote the
prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates
every binary string x that is shorter than w and has twice as many 0s as 1s. There are two
cases to consider:

• If w= ε, then ε ∈ L(G) because of the production S→ ε.
• Suppose w is non-empty. To simplify notation, let ∆i =∆(w≤i) for every index i, and

observe that ∆0 =∆|w| = 0. There are several subcases to consider:

– Suppose∆i = 0 for some index 0< i < |w|. Then we can write w = x y , where x and
y are non-empty strings with ∆(x) =∆(y) = 0. The induction hypothesis implies
that x , y ∈ L(G), and thus the production rule S→ SS implies that w ∈ L(G).

– Suppose ∆i > 0 for all 0 < i < |w|. Then w must begin with 00, since otherwise
∆1 = −2 or ∆2 = −1, and the last symbol in w must be 1, since otherwise ∆|w|−1 =
−1. Thus, we can write w= 00x1 for some binary string x . We easily observe that
∆(x) = 0, so the induction hypothesis implies x ∈ L(G), and thus the production
rule S→ 00S1 implies w ∈ L(G).

– Suppose ∆i < 0 for all 0 < i < |w|. A symmetric argument to the previous case
implies w = 1x00 for some binary string x with ∆(x) = 0. The induction hypothesis
implies x ∈ L(G), and thus the production rule S→ 1S00 implies w ∈ L(G).

– Finally, suppose none of the previous cases applies: ∆i < 0 and ∆ j > 0 for some
indices i and j, but ∆i 6= 0 for all 0< i < |w|.

Let i be the smallest index such that ∆i < 0. Because ∆ j either increases by 1
or decreases by 2 when we increment j, for all indices 0 < j < |w|, we must have
∆ j > 0 if j < i and ∆ j < 0 if j ≥ i.

In other words, there is a unique index i such that ∆i−1 > 0 and ∆i < 0. In
particular, we have ∆1 > 0 and ∆|w|−1 < 0. Thus, we can write w = 0x1y0 for some
binary strings x and y , where |0x1|= i.

We easily observe that ∆(x) = ∆(y) = 0, so the inductive hypothesis implies
x , y ∈ L(G), and thus the production rule S→ 0S1S0 implies w ∈ L(G).

In all cases, we conclude that G generates w. �

Together, Claim 1 and Claim 2 imply L = L(G). �

Rubric: 10 points:
• part (a) = 4 points. As usual, this is not the only correct grammar.
• part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇, each using the standard

induction template (scaled).

3

