1. Recall that \(L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \) is language of a UTM, and \(L_{HALT} = \{ \langle M \rangle \mid M \text{ halts on blank input} \} \) is the Halting language.
 - Let \(L_{\text{regular}} = \{ \langle M \rangle \mid M \text{ accepts a regular language} \} \).
 - Prove that \(L_{\text{regular}} \) is undecidable.
 - Prove that \(L_u \leq L_{HALT} \).
 - Extra credit: Prove that \(L_{\text{empty}} = \{ \langle M \rangle \mid L(M) = \emptyset \} \) is not recursively enumerable.

2. This problem is about polynomial time reductions and NP-Completeness.
 (a) SAT is a meta problem which partially explains why Cook-Levin proved that it is NP-Complete first. In this part the goal is to get some practice modeling problems via constraint satisfaction, in other words, reducing them to SAT. Given an undirected graph \(G = (V, E) \) a matching in \(G \) is a set of edges \(M \subseteq E \) such that no two edges in \(M \) share a node. A matching \(M \) is perfect if \(2|M| = |V| \), in other words if every node is incident to some edge of \(M \). PerfectMatching is the following decision problem: does a given graph \(G \) have a perfect matching? Describe a polynomial-time reduction from PerfectMatching to SAT. Hint: use a Boolean variable \(x_e \) for each edge \(e \in E \) and write appropriate constraints. Does this prove that PerfectMatching is NP-Complete?
 (b) We call an undirected graph an eight-graph if it has an odd number of nodes, say \(2n - 1 \), and consists of two cycles \(C_1 \) and \(C_2 \) on \(n \) nodes each and \(C_1 \) and \(C_2 \) share exactly one node. See figure below for an eight-graph on 7 nodes.

![Eight Graph](image)

Given an undirected graph \(G \) and an integer \(k \), the EIGHT problem asks whether or not there exists a subgraph which is an eight-graph on \(2k - 1 \) nodes. Prove that EIGHT is NP-Complete.

3. Not to submit: Given an undirected graph \(G = (V, E) \), a partition of \(V \) into \(V_1, V_2, \ldots, V_k \) is said to be a clique cover of size \(k \) if each \(V_i \) is a clique in \(G \). CLIQUE-COVER is the following decision problem: given \(G \) and integer \(k \), does \(G \) have a clique cover of size at most \(k \)?
• Describe a polynomial-time reduction from CLIQUE-COVER to SAT. Does this prove that CLIQUE-COVER is NP-Complete? For this part you just need to describe the reduction clearly, no proof of correctness is necessary. Hint: Use variable $x(u, i)$ to indicate that node u is in partition i.
• Prove that CLIQUE-COVER is NP-Complete.

Solved Problem

4. A *double-Hamiltonian tour* in an undirected graph G is a closed walk that visits every vertex in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a double-Hamiltonian tour.

This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow c \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow c \rightarrow a$.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a small gadget to every vertex of G. Specifically, for each vertex v, we add two vertices v^\flat and v^\sharp, along with three edges vv^\flat, vv^\sharp, and $v^\flat v^\sharp$.

I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

\implies Suppose G has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of H by replacing each vertex v_i with the following walk:

$$\cdots \rightarrow v_i \rightarrow v_i^\flat \rightarrow v_i^\flat \rightarrow v_i^\sharp \rightarrow v_i^\sharp \rightarrow v_i \rightarrow \cdots$$

\Leftarrow Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the original graph G; the tour D must visit v exactly twice. Those two visits split D into two closed walks, each of which visits v exactly once. Any walk from v^\flat or v^\sharp
to any other vertex in H must pass through v. Thus, one of the two closed walks visits only the vertices v, v^\flat, and v^\sharp. Thus, if we simply remove the vertices in $H \setminus G$ from D, we obtain a closed walk in G that visits every vertex in G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

With more effort, we can construct a graph H that contains a double-Hamiltonian tour that traverses each edge of H at most once if and only if G contains a Hamiltonian cycle. For each vertex v in G we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.

Common incorrect solution (self-loops): We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a self-loop every vertex of G. Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

Suppose G has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and self-loops:

$$v_1 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n \rightarrow v_n \rightarrow v_1.$$

On the other hand, if H has a double-Hamiltonian tour, we cannot conclude that G has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses any self-loops. The graph G shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops) but no Hamiltonian cycle.
Rubric (for all polynomial-time reductions): 10 points =
+ 3 points for the reduction itself
 – For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course).
+ 3 points for the “if” proof of correctness
+ 3 points for the “only if” proof of correctness
+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.
• A reduction in the wrong direction is worth 0/10.