Undecidable - No algorithm

Problem \(X \) is undecidable iff

- there is no algorithm to solve arbitrary instances of \(X \) in finite time

Typically, undecidable problems ask questions about code (Turing machines, Python, C, ...)

Some questions about code are decidable

Canonical: Halting problem:

- Given a program \(<M> \)
- an input string \(x \)
- Does \(M \) halt when given input \(x \)?

Self-Halt: Given program \(<M> \)

- Does \(M \) halt when given \(<M> \) as input?

Suppose Bob decides **SELF-HALT**.

\[\begin{align*}
\text{Accept} (\text{Bob}) &= \text{SELF-HALT} \\
\text{Hang} (\text{Bob}) &= \emptyset
\end{align*} \]

\[
\begin{align*}
\text{Alice} (w) : & \quad \text{If Bob} (w) \text{ accepts } \\
& \quad \text{else return True} \\
\text{Accept} (\text{Alice}) = \text{Reject} (\text{Bob})
\end{align*}
\]

\[
\begin{align*}
\text{Alice accepts} (\text{Alice}) & \implies \text{Bob accepts} (\text{Alice}) \\
& \implies \text{Alice hangs on} (\text{Alice}) \\
& \implies \text{Bob rejects} (\text{Alice}) \\
& \implies \text{Alice accepts} (\text{Alice}) \\
& \implies \text{Bob doesn't exist!}
\end{align*}
\]

by def. SELF-HALT
by def. Alice
by def. SELF-HALT
Thm:

$\text{HALT is undecidable}$

Proof: reduction from SelfHalt.

To prove problem X is undecidable, describe a reduction from any undecidable problem to problem X.

NeverHalt: Given $\langle M \rangle$, does M always co-loop?

Suppose Bunny decides NeverHalt

Build an algorithm for Halt:

$$\text{HaltDecider}(\langle M \rangle, w):$$

```
Write following code:

Meow(x):
    returns M(w)

if Bunny(\langle Meow \rangle) then return False
else return True
```

Reduction from Halt

Suppose M halts on w:

\Rightarrow Meow halts on every input
\Rightarrow Bunny rejects $\langle\text{Meow}\rangle$
\Rightarrow HaltDecider accepts $\langle M \rangle, w$

Suppose M loops on w:

\Rightarrow Meow loops on every input
\Rightarrow Bunny accepts $\langle\text{Meow}\rangle$
\Rightarrow HaltDecider rejects $\langle M \rangle, w$

Contradiction! Bunny doesn't exist!
Rice's Theorem:

Given \(<M>\), does \(M\) accept _____?

\[\text{Accept}(M) = \{ w \mid M \text{ accepts } w \} \]

Let \(L\) be any family of languages such that:
- There is a program \(Y\) s.t. \(\text{Accept}(Y) \in L\)
- There is a program \(N\) s.t. \(\text{Accept}(N) \notin L\)

Deciding, given \(<M>\), if \(\text{Accept}(M) \in L\) is impossible.

Does \(M\) accept \(\varepsilon\)?
- \(L = \text{languages contain } \varepsilon\)
- \(Y = \text{accept all strings}\)
- \(N = \text{accept nothing}\)

Rice's Theorem \(\checkmark\)

Does \(M\) accept all palindromes with length \(2^n\)?
- \(L = \text{lang containing all palindromes length } 2^n\)
- \(Y = \text{accept } \varepsilon^*\)
- \(N = \text{accept } \emptyset\)

Does \(M\) accept a non-regular language?
- \(Y = \text{accepts } \varepsilon 0^n 1^n 0^n \text{ and nothing else}\)
- \(N = \text{return True}\)