HW11 out due Tue after break = last HW
NO GPS due Mon after break
Might be short GPS after break
CAS for next semester
After break: Conflict Fam for final exam Fri Dec 8-8am
No HW parties this Sat or next Sat or Dec 7 <

My office hours Wed 4->5 => 3-4 and after

X is NP-hard iff solving X in poly time => P=NP
iff there is a poly time reduction from 3SAT to X
or MaxIndSet
or vertexCover
or MaxClique

KiZeiten

If there is a poly time reduction from 3SAT to X

\[
\text{VertexCover} \quad \text{G:} \quad \text{H:}
\]

VertexCover(G, 2) = True
VertexCover(G, 1) = False
We are trying to establish a correspondence between vertex covers S in G and Hamiltonian cycles C in H.

G

- vertex
- edge
- $v \in S$
- $uv \; s.t. \; u \in S$
- $uv \; s.t. \; u \notin S$
- $\# \text{vertices in } S$

H

- vertex path
- edge gadget
- C uses u's vertex path
- C enters both ends of uv's edge gadget
- C enters uv's gadget at u's end, crosses over to u's end, crosses back and leaves from u's end
- $\# \text{vertex paths traversed by } C$

$=$ $\# \text{ covered vertices}$
If ham cycle in H uses u's vertex gadget, mark v's edge gadget.

If ham cycle touches every edge gadget, every gadget has at least one marked vertex.
(a \lor b \lor c) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b} \lor \bar{d})