Midterm 2 Monday Nov. 67.9 pm
recursion - $D \& C$, backzracking, $D P$
graphs - traversal/comectivity, top.sort, strong coups, shortest paths
Thursday + Friday - revien sessions
Thu PM, Sat PM, Mon AM - "study parties"
Sat 5:30 - HKN review session
Z practice exams $\quad \infty$ practice problems
Locations on web site
Conflict DRES
Single-Source Input: Graph $G=(V, E)$ directed

Shortest Paths
Unweighted: BFS $O(V+E)$
$=O(E)$ Output: For every vertex $v \in V$
$D A G:$ DFS/topsort $O(V+E)$
Nou-neg weights: Dikstra

$$
O(E \log V) \quad \circ D(E+V \log V)
$$

Arbitrary: Bellmam-Ford $O(V E)$

$\frac{\text { BELLMANFORD }(s)}{\text { InitSSSP }(s)}$
$\left[\begin{array}{c}\text { repeat } V-1 \text { times } \\ \text { for every edge } u \rightarrow v \\ \text { if } u \rightarrow v \text { is tense } \\ \operatorname{RELAx}(u \rightarrow v)\end{array}\right.$
for every edge $u \rightarrow v$
if $u \rightarrow v$ is tense
return "Negative cycle!"

All-pairs shortest paths
Output:

$$
\begin{aligned}
& \text { Outpost }[1 . . v, 1 \ldots] \\
& \text { distlu,v] }=\text { length of } \\
& \text { shortest } u \rightarrow v \text { path } \\
& \left(v^{3}\right) \text { time Floyd- } \\
& \text { warshall }
\end{aligned}
$$

After iterations of main 100 p :
v.dist \leq length of shortest path from s to with $\leq i$ edges.

Bellman-Furd Again Given Gi, s
Build a dag $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$
o $V^{\prime}=V \times\{0,1, \ldots, v-1\} \Leftarrow\left|v^{\prime}\right|=O\left(v^{2}\right)$

- $E^{\prime}=\{(u, i) \rightarrow(v, i \in 1) \mid u \rightarrow v \in E$ and $0 \leq i<v-1\}$
- $w^{\prime}((u, i) \rightarrow(v, i+1))=w(u \rightarrow v)$

$$
\Sigma\left|E^{\prime}\right|=O(V E)
$$

This is a day because and component increases
Walk in $G: s \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{l}$
I same total weight
Path in $G^{\prime}:(s, D) \rightarrow\left(v_{1}, 1\right) \rightarrow\left(v_{2}, \tau\right) \rightarrow \ldots \rightarrow\left(v_{2}, l\right)$
Shortest path from s to v in G
o
Shortest path From $(s, 0)$ to some (v, l) in G^{\prime}
we can compute distal (s, v)
by running DAG.SSSP ago from (S,D) in G^{\prime}

$$
\begin{aligned}
& O\left(V^{\prime}+E^{\prime}\right) \text { time } \\
& =O\left(V^{2}+V E\right) \\
& =O(V E) \text { if } G \text { is connected. }
\end{aligned}
$$

$$
\operatorname{dist(u,v,\ell)=\{ \begin{array} {ll}
{0}&{\text {if}u=v}\\
{w(u\rightarrow v)}&{\text {if}\ell =1}\\
{\operatorname {min}_{x}(\operatorname {dist}(u,x,\ell /2)+\operatorname {dist}(x,v,\ell /2))}&{\text {otherwise}}
\end{array} }
$$

count variables $\Rightarrow O\left(v^{4}\right)$ time but $\&$ has only $O(\log V)$ values!

$$
\Rightarrow O\left(v^{3} \log v\right)
$$

dist $(u, v, r)=$ length of shortest path from utou Through vertices $\leq r$

$$
\operatorname{dist}(u, v, r)= \begin{cases}w(u \rightarrow v) & \text { if } r=0 \\
\min \left\{\begin{array}{c}
\operatorname{dist}(u, v, r-1) \\
\operatorname{dist}(u, r, r-1)+\operatorname{dist}(r, v, r-1)
\end{array}\right\} & \text { otherwise }\end{cases}
$$

$\pi(u, v, r)$ is the shortest path (if any) from u to v that passes through only vertices numbered at most r.

FLOYDWARSHALL($V, E, w)$:

for all vertices u for all vertices v

$$
\operatorname{dist}[u, v] \leftarrow w(u \rightarrow v)
$$

for all vertices r for all vertices u for all vertices v

$$
\text { if } \operatorname{dist}[u, v]>\operatorname{dist}[u, r]+\operatorname{dist}[r, v]
$$

$$
\operatorname{dist}[u, v] \leftarrow \operatorname{dist}[u, r]+\operatorname{dist}[r, v]
$$

```
LEYZOREKAPSP(V,E,w):
    for all vertices \(u\)
        for all vertices \(v\)
            \(\operatorname{dist}[u, v] \leftarrow w(u \rightarrow v)\)
    for \(i \leftarrow 1\) to \(\lceil\lg V\rceil\)
                \(\left\langle\left\langle\ell=2^{i}\right\rangle\right\rangle\)
        for all vertices \(u\)
            for all vertices \(v\)
                for all vertices \(x\)
                    if \(\operatorname{dist}[u, v]>\operatorname{dist}[u, x]+\operatorname{dist}[x, v]\)
                        \(\operatorname{dist}[u, v] \leftarrow \operatorname{dist}[u, x]+\operatorname{dist}[x, v]\)
```

FLOYDWARSHALL (V, E, w) :
for all vertices u for all vertices v
$\operatorname{dist}[u, v] \leftarrow w(u \rightarrow v)$
for all vertices r for all vertices u for all vertices v
if $\operatorname{dist}[u, v]>\operatorname{dist}[u, r]+\operatorname{dist}[r, v]$ $\operatorname{dist}[u, v] \leftarrow \operatorname{dist}[u, r]+\operatorname{dist}[r, v]$

