WFS marks every vertex reachable from \(s \).

\[
O(V+E)
\]

WFS assigns a parent to every vertex reachable from \(s \) (except \(s \) itself).

\[
\text{DFS (stack)} \quad \text{BFS (queue)} \rightarrow \text{shortest path tree}
\]

\[
\text{``Best-first``: Dijkstra \rightarrow priority queue}
\]

\[
\text{Prims/Sarnik} \rightarrow \text{MST widest path}
\]

Algorithm: WhateverFirstSearch(s)

1. put \((\emptyset, s)\) in bag
2. while the bag is not empty
 1. take \((p, v)\) from the bag
 2. if \(v \) is unmarked
 1. mark \(v \)
 2. \(v, \text{parent} \leftarrow p \)
 3. for each edge \(vw \)
 1. \((v, w) \) into the bag

\(O(1) \)
Undirected connectivity $O(V+E)$.

Components $O(V+E)$.

Shortest paths:
- Breadth First Search $O(V+E)$
- Dijkstra's Algorithm $O(E \log V)$

WFSAll(G):

for all vertices v
 unmark v

for all vertices v
 if v is unmarked
 WhicheverFirstSearch(v)

COUNTAndLABEL(G):

$count \leftarrow 0$

for all vertices v
 unmark v

for all vertices v
 if v is unmarked
 $count \leftarrow count + 1$
 LABELONE(v, count)

return $count$

LABELONE(v, count):

while the bag is not empty
 take v from the bag
 if v is unmarked
 mark v
 $v.comp \leftarrow count$
 for each edge vw
 put w into the bag
Directed graphs

```
WhateverFirstSearch(s):
put s into the bag
while the bag is not empty
    take v from the bag
    if v is unmarked
        mark v
        for each edge v→w
            put w into the bag

reachability
O(V+E)

strong connectivity
O(V+E)

Entire graph strongly connected? O(V+E)

Acyclic? DAG? O(V+E) DFS

strong components O(V+E) DFS
```

```
DFS(v):
mark v
preVisit(v)
for each edge vw
    if w is unmarked
        parent(w) ← v
        DFS(w)
postVisit(v)
```

DFSALL(G):

```
Preprocess(G)
for all vertices v
    unmark v
for all vertices v
    if v is unmarked
        DFS(v)
```

WFS builds a spanning tree of vertices reachable from s

v can reach u
"v is reachable from u"

O(V+E)

count+ + v.pre+ count

count+ + v.post+ count

count ← 0
DFSALL(G):
\(\text{clock} \leftarrow 0 \)
for all vertices \(v \)
unmark \(v \)
for all vertices \(v \)
if \(v \) is unmarked
\(\text{clock} \leftarrow \text{DFS}(v, \text{clock}) \)

DFS(v,clock):
mark \(v \)
\(\text{clock} \leftarrow \text{clock} + 1; \; v.pre \leftarrow \text{clock} \)
for each edge \(v \rightarrow w \)
if \(w \) is unmarked
\(w.parent \leftarrow v \)
\(\text{clock} \leftarrow \text{DFS}(w, \text{clock}) \)
\(\text{clock} \leftarrow \text{clock} + 1; \; v.post \leftarrow \text{clock} \)
return \(\text{clock} \)

Pre: abfghdlokpeinjm
Post: dkoaplhcgfba mjni

Lemma: \(G \) has a cycle iff
For some edge \(u \rightarrow w \)
we have \(u.post < w.post \)
TopologicalSort(G):

\[
\text{clock} \leftarrow V \\
\text{for all vertices } v \text{ in postorder} \\
S[\text{clock}] \leftarrow v \\
\text{clock} \leftarrow \text{clock} - 1 \\
\text{return } S[1..V]
\]