\(V \) - vertices, any finite nonempty set

\(E \) - edges = pairs of vertices

undirected: \(\exists u,v \notin E \setminus u \sim v \)

directed: \((u,v) = u \rightarrow v \)

intersection graphs
\[F_n = F_{n-1} + F_{n-2} \]

Edit distance \Rightarrow

Directed acyclic graphs
Data structures

v. color
color[v]
mark
mark[v]

DEFAULT:

adjacency list
check if u,v ∈ E \(O(\min(\deg(u), \deg(v))) \)
list all neighbors of \(u \) in \(O(\deg(v)) \)
\(O(V+|E|) \) space

Adjacency matrix:
u,v ∈ E? \(O(1) \) time
list all neighbors of \(v \) \(O(|V|) \) time
\(O(V^2) \) space
Depth-First Search

RecursiveDFS(v):
- if v is unmarked
 - mark v
 - for each edge vw
 - RecursiveDFS(w)

IterativeDFS(s):
- Push(s)
- while the stack is not empty
 - v ← Pop
 - if v is unmarked
 - mark v
 - for each edge vw
 - Push(w)

WhateverFirstSearch(s):
- put s into the bag \(\leq 1 \)
- while the bag is not empty
 - take v from the bag
 - if v is unmarked
 - mark v
 - for each edge vw
 - put w into the bag

\[O(V + E) \]

WhateverFirstSearch(s):
- put \((\emptyset, s)\) in bag
- while the bag is not empty
 - take \((p, v)\) from the bag
 - if v is unmarked
 - mark v
 - parent(v) \(\leftarrow p\)
 - for each edge vw
 - put \((v, w)\) into the bag

\((\ast)\)

\((\dagger)\)

\((\ast\ast)\)
WFSALL\((G)\) :
for all vertices \(v\)
unmark \(v\)
for all vertices \(v\)
if \(v\) is unmarked
 \[\text{WHATEVERFIRSTSEARCH}(v)\]

COUNTCOMPONENTS\((G)\) :
\[\text{count} \leftarrow 0\]
for all vertices \(v\)
 unmark \(v\)
for all vertices \(v\)
if \(v\) is unmarked
 \[\text{count} \leftarrow \text{count} + 1\]
 \[\text{WHATEVERFIRSTSEARCH}(v)\]
\[\text{return count}\]

\[O(V+E)\] time

COUNTANDLABEL\((G)\) :
\[\text{count} \leftarrow 0\]
for all vertices \(v\)
 unmark \(v\)
for all vertices \(v\)
 if \(v\) is unmarked
 \[\text{count} \leftarrow \text{count} + 1\]
 \[\text{LABELONE}(v, \text{count})\]
\[\text{return count}\]

LABELONE\((v, \text{count})\) :
while the bag is not empty
take \(v\) from the bag
if \(v\) is unmarked
 mark \(v\)
 \[\text{comp}(v) \leftarrow \text{count}\]
 for each edge \(vw\)
 put \(w\) into the bag

LABELONE\((v, \text{count})\) :