Backtracking \rightarrow Dynamic Programming
FIrst make It work. Then make It fast.
queens (Gars)
"methodisches Tattoniren"
n

$$
r=4
$$

$$
Q=[2,5,3,8]
$$

How many ways ace there to place n queens on an nan board, if queens are already on first $r-1$ rows at positions $Q[1 . r-1]$?

```
PlaceQueens \((Q[1 . . n], r)\) :
    if \(r=n+1\)
        print \(Q[1 . . n]\)
    else
        for \(j \leftarrow 1\) to \(n\), colurm index
        legal \(\leftarrow\) True
            for \(i \leftarrow 1\) to \(r-1\)
            if \((Q[i]=j)\) or \((Q[i]=j+r-i)\) or \((Q[i]=j-r+i)\)
                legal \(\leftarrow\) FALSE
            if legal
                \(Q[r] \leftarrow j\)
                    PlaceQueens \((Q[1 . . n], r+1) \quad\langle\) Recursion! \(\rangle\rangle\)
```

Figure 2.2. Gauss and Laquière's backtracking algorithm for the n queens problem.

n-queens completion
is NP-hand

top-dam n-queenr
compltion
OPEN

Figure 2.4. Vera wins the 3×3 fake-sugar-packet game.

Game tree

Game state $=$ positions of all pieces \NOT FULL History

PLAYANYGAME $(X$, player $)$:

if player has already won in state X return Good
if player has already lost in state X return BAD
for all legal moves $X \leadsto Y$ if $\operatorname{PLAYANYGAME}(Y, \neg$ player $)=\mathrm{BAD}$ return Good $\quad\langle\langle X \leadsto Y$ is a good move $\rangle\rangle$
return BAD
$\langle\langle T h e r e$ are no good moves $\rangle\rangle$

PRIMVSDIGNITASIINTIAM|TENVISCIENTIANONPOTEST ESSERESENIMSVNTPARVAEPROPEINSINGVLISLITTERIS ATQVEINTERPVNCTIONIBUSVERBORVMOCCVPATAE \uparrow
interpuncts
Given a string $A[7 \ldots n]$, is A the concat of words?
Is word $(w) \longrightarrow$ True if w is z word

BLUE	STEM	UNIT	ROBOT	HEARTHANDSATURNSPIN

Is the suffix $A[i \ldots n]$ the concat of words?

```
Split table (A[1.. \(n]\) ):
    if \(n=0\)
        return True
    for \(i \leftarrow 1\) to \(n\)
        if sWord (A[1..i])
            if \(\operatorname{Splittable}(A[i+1 . . n])\)
                return True
    return FALSE
```

 \(\operatorname{Splittable}(i)= \begin{cases}\text { TRUE } & \text { if } i>n \\ \bigvee_{j=i}^{n}(\operatorname{IsWord}(i, j) \wedge \operatorname{Splittable}(j+1)) & \text { otherwise }\end{cases}\)
 〈/Is the suffix ALi ..n] Splittable? $\rangle\rangle$
Splittable (i):
if $i>n$
return True
for $j \leftarrow i$ to n
if $\operatorname{IsWORD}(i, j)$
if $\operatorname{Splittable}(j+1)$
return True
return FALSE

But Only n different ways to call this function Write down results! $\Rightarrow O\left(n^{2}\right)$ time (calls to I Iswad)

