How many ways are there to place n queens on an $n \times n$ board, if queens are already on first r rows at positions $Q[1..r]$?
PLACEQUEENS(Q[1..n], r):
 if r = n + 1
 print Q[1..n]
 else
 for j ← 1 to n
 legal ← TRUE
 for i ← 1 to r − 1
 if (Q[i] = j) or (Q[i] = j + r − i) or (Q[i] = j − r + i)
 legal ← FALSE
 if legal
 Q[r] ← j
 PLACEQUEENS(Q[1..n], r + 1) ⟨(Recursion!)⟩

Figure 2.2. Gauss and Laquière's backtracking algorithm for the n queens problem.
n-queens completion is NP-hard

top-down n-queens completion

OPEN
Figure 2.4. Vera wins the 3×3 fake-sugar-packet game.
Game state = positions of all pieces

\[\text{not full history} \]

```
PLAYANYGAME(X, player):
    if player has already won in state X
        return GOOD
    if player has already lost in state X
        return BAD
    for all legal moves \( X \rightsquigarrow Y \)
        if PLAYANYGAME(Y, \neg player) = BAD
            return GOOD \[X \rightsquigarrow Y \text{ is a good move}\]
    return BAD \[(There are no good moves)\]
```
Given a string $A[1...n]$, is A the concat of words?

$\text{Is Word}(w) \iff w$ is a word

$\text{Is Word}(w) \iff \text{True}$ if w is a word

$\text{Is Word}(w) \iff \text{False}$ if w is not a word

- BLUE STEM UNIT ROBOT HEART HANDS ATURN SPIN

- BLUE ST EMU NITRO BOT HEART HANDS ATURN SPIN

Is the suffix $A[i...n]$ the concat of words?
SPLITTABLE(A[1..n]):

if \(n = 0 \)
 return \(\text{TRUE} \)

for \(i \leftarrow 1 \) to \(n \)
 if Is\text{WORD}(A[1..i])
 if SPLITTABLE(A[i + 1..n])
 return \(\text{TRUE} \)

return \(\text{FALSE} \)

\[
S\text{plittable}(i) = \begin{cases}
\text{TRUE} & \text{if } i > n \\
\bigvee_{j=i}^{n} (\text{Is\text{WORD}}(i, j) \land \text{SPLITTABLE}(j + 1)) & \text{otherwise}
\end{cases}
\]

SPLITTABLE(i):

if \(i > n \)
 return \(\text{TRUE} \)

for \(j \leftarrow i \) to \(n \)
 if Is\text{WORD}(i, j)
 if SPLITTABLE(j + 1)
 return \(\text{TRUE} \)

return \(\text{FALSE} \)

But only \(n \) different ways to call this function

Write down results! \(\Rightarrow O(n^2) \) time (calls to Is\text{WORD})