Backtracking -> Dynamic Programming FIRST MAKE IT WORK. THEN MAKE IT FAST.

& queens (Gansa) "methodisches Tattoniren"

n

How many ways are there to place a queens on an nan board, if queene are already or first r-1 rows at positions Q[1...r.]?

Figure 2.2. Gauss and Laquière's backtracking algorithm for the n queens problem.

Figure 2.4. Vera wins the 3×3 fake-sugar-packet game.

same tree

PRIMVSDIGNITASINTAMTENVISCIENTIANONPOTEST ESSERESENIMSVNTPARVAEPROPEINSINGVLISLITTERIS ATQVEINTERPVNCTIONIBUSVERBORVMOCCVPATAE

J interpuncts

Given 2 string All.	.n], is A the concat of words?
Is Word (w) Strue if is 2 word Stalse o/w	
The False	o/w

BLUE STEM UNIT ROBOT HEARTHANDSATURNSPIN

BLUEST EMU NITRO BOT	HEARTHANDSATURNSPIN

Is the suffix A(i-n] the concat of words?

$$\frac{\text{SPLITTABLE}(A[1..n]):}{\text{if } n = 0}$$

$$\text{return True}$$

$$\text{for } i \leftarrow 1 \text{ to } n$$

$$\text{if IsWord}(A[1..i])$$

$$\text{if SPLITTABLE}(A[i+1..n])$$

$$\text{return True}$$

$$\text{return False}$$

$$Splittable(i) = \begin{cases} TRUE & \text{if } i > n \\ \bigvee_{j=i}^{n} (IsWORD(i, j) \land Splittable(j+1)) & \text{otherwise} \end{cases}$$

Write down results! => O(n2) time (colls to Iswad)