HW 1.1 graded \rightarrow Gradescope \rightarrow regrade requests
"You were too lenient"
"There ts a major bug in solutions"
GPST due Bpm
true due tomorrow apr
GP3 due Mon atm
Hi' 3 due next Tue ppm

Building a DFA for the language of strings containing Dy 100 ard 11 .
citron or

Two states 9 and a^{\prime}

Is this the smallest DFA for

$$
(0+1)^{*}(00+11)(0+1)^{*} ?
$$

$$
y \in s
$$

are distnishable iff
there is a string w s.t. $\delta^{*}(q, w)$ or $\delta^{*}(q, w)$
is accepting but not both.
\Leftrightarrow Either one of a and a^{\prime} is accepting
or there is a symbol a s.t.
$\delta(a, a)$ and $\delta(G ; a)$ are distinguishabk.
$\begin{array}{llll}\text { sit dist by } & \varepsilon \\ 0, t & " & " & \varepsilon \\ 1, t & & & \varepsilon\end{array}$
S,O dist by O
s, 1 dist by 1
0,1 dist by 0 or 1

Strings x and y are distinguishable wot L if there is a string z s.t.
$x z \in L$ or $y z \in L$ but not both.
Set F of strings $\left.\{\varepsilon, 0,1,00\} \quad L=(0+1)^{\times} \times 00+i\right)(0+1)^{*}$
is a Fooling-set for L
\(\left.\begin{array}{lc}\varepsilon, 00 \& are distingished by \varepsilon \\
0,00 \& \varepsilon \\
1,00 \& \varepsilon \\
\varepsilon .0 \& 1 \\
\varepsilon 1 \& 1 \\

0.1 \& 1\end{array}\right] \Rightarrow\)| $[\varepsilon \notin L, \infty \in L]$ |
| :---: |

Min \# states in DFA $=$ Max\#strings in a footing set

$$
\begin{aligned}
L & =\left\{O^{n} 1^{n} \mid n \geqslant 0\right\} \neq O^{*} 1^{*} \\
& =\{\varepsilon, 01,0011,000111, \ldots\} \\
F & =\left\{\varepsilon, 0,00,000,0000,00000,0^{6}, 0^{7} \ldots\right\}
\end{aligned}
$$

ε and 0 dist by $\frac{1}{11}$
ε and $00, \ldots \frac{11}{11}$
0 and 000
111
000111111
O^{i} and $O j$ dist by 1^{i}

$$
\begin{aligned}
& \text { d } O^{j} \text { dist by } 1^{i} \\
& O^{i} 1^{i} \in L \text { but } O^{i} \perp^{j} \notin L
\end{aligned}
$$

L is not regular!
$L=\left\{O^{n} 1^{n} \mid n \geqslant 0^{\prime} s\right.$ is not regular.
Proof:
Let $F=O^{*}=\left\{O^{n} \ln \geqslant 0\right\}$
Let x and y be any tho strings in F
Then $x=0^{i}$ and $y=0 j$ for some $i \neq j$
Let $z=1 j$

- $y z=0 j j^{\prime} \in L$

So z distinguishes x and y
So F is 2 Fooling set for L
$F_{i s}$ infinite, so L carnot be regular

$$
L=\text { palindromes }=\left\{w \in \Sigma^{*} \mid w=\operatorname{rev}(w)\right\}
$$

$$
001010100
$$

Theorem. Lis not regular.
Proof: Consider the set $F=\{0 i 1 \mid i \geqslant 0\}$ Let x and y be s-bitrany distinct strings in F Then $x=0.1$ and $y=O 11$ For some $i \neq j$ Let $z=0 i$

- Then $x z=0^{i} 10^{i} \in L$
- But yz=0j10i\&L because Efj

So z is dist. Suffix for x and y
So F is a fooling set for L
Fir infinite $\Rightarrow L$ is no t regular

Kleene's Theoren
regular \Leftrightarrow antomatic $D F A \backsim N F A \backsim$ reg.expr.
Nondeterministic FA

Q - states
s - stat state
A - occepling statos
$\delta: Q \times \Sigma \rightarrow 2^{Q} \longleftarrow$ subarts of Q powerset of $Q \quad P(Q)$

$$
\delta^{*}: Q \times \Sigma^{x} \rightarrow 2^{Q}
$$

$$
\delta^{*}(a, w)= \begin{cases}\left\{q^{q}\right. & w=\varepsilon \\ \bigcup_{a^{\prime} \in \delta(a, a)} \delta^{*}\left(a^{\prime}, x\right) & w=a x\end{cases}
$$

M accepts ω iff $\delta^{*}(s, w) \cap A \neq \varnothing$

