Lemma: For all strings $w,y,z : (wyz)z = w \cdot (yoz)$

Proof: Let w,y,z be arbitrary strings. Assume for all strings x shorter than w that $(xoy)z = x \cdot (yoz)$.

Case: $w=\varepsilon$

$(wyz)z = (\varepsilon y)z$

$= yz$

$= \varepsilon \cdot (yoz)$

$= w \cdot (yoz)$

$= \varepsilon$

Case: $w=\alpha x$ for some $\alpha \in \Sigma$ and string x

$(wyz)z = (\alpha x y)z$

$= (\alpha (x y))z$

$= (\alpha \cdot \varepsilon)z$

$= \alpha \cdot (\varepsilon z)$

$= \alpha \cdot ((x y)z)$

$= \alpha \cdot (x(yoz))$

$= \alpha \cdot x \cdot (yoz)$

$= w \cdot (yoz)$

Therefore $(wyz)z = w \cdot (yoz)$
Proof: Let \(w \) be an arbitrary string. Assume, for every string \(x \) such that \(|x| < |w| \), that \(x \) is perfectly cromulent. There are two cases to consider.

- Suppose \(w = \varepsilon \).

Therefore, \(w \) is perfectly cromulent.

- Suppose \(w = ax \) for some symbol \(a \) and string \(x \).

The induction hypothesis implies that \(x \) is perfectly cromulent.

Therefore, \(w \) is perfectly cromulent.

In both cases, we conclude that \(w \) is perfectly cromulent.

\[
\begin{align*}
\text{LANGUAGE} &= \text{set of strings} \\
\text{All binary strings} &= \Sigma^* \\
\emptyset &= \text{empty set} \\
\Sigma^* &= \text{all strings over } \Sigma \\
\exists \geq 3 \\
\forall w \in \Sigma^* \mid \#1s \geq w = \#0s \text{ in } w \\
001101 & \\
\exists \text{JAKE, FINN, FIONNA, CAKES} \\
\text{All Python programs} \\
\text{All Python programs that do loop} \\
\end{align*}
\]
Kleene star/closure

\[L^* = \text{concatenations of any strings in } L \]
\[= \varepsilon L \cup L \cdot L \cup L \cdot L \cdot L \cup \ldots \]
\[= \varepsilon \cup L \cdot L^* \]

\[w \in L^* \iff w = \varepsilon \text{ or } w = x \cdot y \text{ for some } x \in L \text{ and } y \in L^* \]

\[\varepsilon 01 \varepsilon^* = \varepsilon, 01, 0101, 010101, \ldots \]

Is \(L^* \) always infinite? \(\emptyset^* = \varepsilon \varepsilon^* \)
\(\varepsilon 01 \varepsilon^* = \varepsilon 01 \varepsilon^* \)

Kleene's regular languages

\(L \) is regular \(\iff \)
\[\begin{cases} L = \emptyset & \text{For some } w \in \varepsilon^* \\ L = \varepsilon w^3 & \text{branching} \\ L = A \cup B & \text{reg langs } A, B \\ L = A \cdot B & \text{reg langs } A, B \\ L = A^* & \text{reg lang } A \\ \end{cases} \]

While

```
if
else
```

regular expression = \(\emptyset \)
\(A + B \)
\(AB \)
\(A^* \)

\[\emptyset + 10^* = \varepsilon 01 \varepsilon^* \cup (\varepsilon 10 \varepsilon^* \cdot \varepsilon 01 \varepsilon^*) \]
\[= \varepsilon 0, 1, 10, 100, 1000, 10000, \ldots \]
Alternating O's and I's = never 00 or 11

Good: \[\varepsilon, 0, 1, 10, 01, 01010, 10101010, \ldots \]

Bad: \[00, 11, 00000, 11001, 1101011, \ldots \]

\[
\left(1 + \varepsilon \right) (01)^{*} (0 + \varepsilon)
\]

Lemma 2.1. The following identities hold for all languages A, B, and C:

(a) \(A \cup B = B \cup A \).

(b) \((A \cup B) \cup C = A \cup (B \cup C) \).

(c) \(\emptyset \cdot A = A \cdot \emptyset = \emptyset \).

(d) \(\{\varepsilon\} \cdot A = A \cdot \{\varepsilon\} = A \).

(e) \((A \cdot B) \cdot C = A \cdot (B \cdot C) \).

(f) \(A \cdot (B \cup C) = (A \cdot B) \cup (A \cdot C) \).

(g) \((A \cup B) \cdot C = (A \cdot C) \cup (B \cdot C) \).

Lemma 2.2. The following identities hold for every language L:

(a) \(L^* = \{\varepsilon\} \cup L^+ = L^* \cdot L^* = (L \cup \{\varepsilon\})^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup L \cup (L \cdot L^+) \).

(b) \(L^+ = L \cdot L^* = L^* \cdot L = L^+ \cdot L^* = L^* \cdot L^+ = L \cup (L \cdot L^*) = L \cup (L^+ \cdot L^+) \).

(c) \(L^+ = L^* \) if and only if \(\varepsilon \in L \).

Lemma 2.3 (Arden's Rule). For any languages A, B, and L such that \(L = A \cdot L \cup B \), we have \(A^* \cdot B \subseteq L \). Moreover, if A does not contain the empty string, then \(L = A \cdot L \cup B \) if and only if \(L = A^* \cdot B \).
A regular expression tree for $0^*0 + 0^*1(10^*1 + 01^*0)^*10^*$

Proof: Let R be an arbitrary regular expression. Assume that every regular expression smaller than R is perfectly cromulent. There are five cases to consider.

- Suppose $R = \emptyset$.

 Therefore, R is perfectly cromulent.

- Suppose R is a single string.

 Therefore, R is perfectly cromulent.

- Suppose $R = S + T$ for some regular expressions S and T.
 The induction hypothesis implies that S and T are perfectly cromulent.

 Therefore, R is perfectly cromulent.

- Suppose $R = S \cdot T$ for some regular expressions S and T.
 The induction hypothesis implies that S and T are perfectly cromulent.

 Therefore, R is perfectly cromulent.

- Suppose $R = S^*$ for some regular expression S.
 The induction hypothesis implies that S is perfectly cromulent.

 Therefore, R is perfectly cromulent.

In all cases, we conclude that w is perfectly cromulent.