String $=$ finite sequence of symbols
Sequence of X_{s} is
empty or an x followed by seq of X 's

Alphabet \sum
a ny nonempty finite st
Usually: $\bar{Z}=\{0,1\}$
Also: $\left\{\Delta A_{0} 0\right\}$
$\{A T C G\}$

String is eitwe
empty ε
symbol followed by string (a, x) or $a \cdot x$ or ax For some $a \in \sum$ for some
string
STRING $=(S,(T,(\pi,(I,(N,(G, \varepsilon))))))$ well omit all this syntactic sugar

Lengthen Function

$$
\begin{aligned}
& \quad|w|= \begin{cases}0 & \text { if } w=\varepsilon \\
1+|x| & \text { if } w=a x \text { for some symbol } \\
\text { some sting }\end{cases} \\
& \begin{aligned}
|\operatorname{STRING}| & =1+|\operatorname{TRING}| \\
=2+|\operatorname{ING}|=\cdots & =5+|G| \\
& =6+|\epsilon|=6
\end{aligned}
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& =N \cdot(0 \cdot(w \cdot H E R \epsilon)) \\
& =N \cdot(0 \cdot(w \cdot(\varepsilon \cdot H \in \pi \epsilon))) \\
& =N \cdot(O \cdot(w \cdot H \in R E)) \\
& \text { = NOWHERE }
\end{aligned}
$$

F HERE . NOW
$=H E R E N O W$

Theorem: For any string w. we have $w \cdot \varepsilon=w$
Proof: Let w be an orbitranystring Assume for all string x such that $|x|<w \mid$ SOAP that $x \cdot \varepsilon=x$.
There are two cases:
"recursive cell "No smaller smaller
counterexample"

- $w=a x$

$$
\begin{aligned}
w \cdot \varepsilon & =a x \cdot \varepsilon \\
& =a \cdot(x \cdot \varepsilon) \\
& =a x^{R}
\end{aligned}
$$

$$
[w=a x]
$$

(definition of o]
[by ind_hyp!?
$=w$
Therefore in all cases.

Theorem: For all strings w and z, we have $|w \cdot z|=|w|+|z|$
Proof: Let w and z be arbitron strings
Assume for all string x shore than w
that $|x \circ z|=|x|+|z|$.
There are tu s cases:

- case 1: $w=\varepsilon$

$$
\begin{align*}
(w \cdot z) & =|\varepsilon \cdot z| \\
& =|z| \tag{def.}\\
& =0+|z| \\
& =|\varepsilon|+|z| \\
& =|w|+|z|
\end{align*}
$$

$$
(w=\varepsilon]
$$

math
def 11
$[\omega=\varepsilon]$

- Case z: wax

$$
\begin{aligned}
|w \cdot z| & =|(a x) \cdot z| & & {[w=a x] } \\
& =|a \cdot(x \cdot z)| & & \operatorname{def} \cdot \\
& =1+|x \cdot z| & & \operatorname{def}|\mid
\end{aligned}
$$

Therefore, in all cases, $|w \cdot z|=|w|+|z|$

