
I study my Bible as I gather apples. First I shake the whole tree, that the ripest might
fall. Then I climb the tree and shake each limb, and then each branch and then each
twig, and then I look under each leaf.

— attributed to Martin Luther (c. 1500)

Life is an unfoldment, and the further we travel the more truth we can comprehend.
To understand the things that are at our door is the best preparation for
understanding those that lie beyond.

— attributed to Hypatia of Alexandria (c. 400) by Elbert Hubbard
in Little Journeys to the Homes of Great Teachers (1908)

Your mind will answer most questions if you learn to relax and wait for the answer.
Like one of those thinking machines, you feed in your question, sit back, and wait . . .

— William S. Burroughs, Naked Lunch (1959)

The methods given in this paper require no foresight or ingenuity,
and hence deserve to be called algorithms.

— Edward R. Moore, “The Shortest Path Through a Maze” (1959)

8
Shortest Paths

Suppose we are given a weighted directed graph G = (V, E, w) with two special
vertices, and we want to find the shortest path from a source vertex s to a target
vertex t. That is, we want to find the directed path P starting at s and ending
at t that minimizes the function

w(P) :=
∑

u�v∈P

w(u�v).

For example, if I want to answer the question “What’s the fastest way to drive
from my old apartment in Champaign, Illinois to my wife’s old apartment in
Columbus, Ohio?”, I might use a graph whose vertices are cities, edges are
roads, weights are driving times, s is Champaign, and t is Columbus.1 The
graph is directed, because driving times along the same road might be different

1West on Church, north on Prospect, east on I-74, south on I-465, east on Airport Expressway,
north on I-65, east on I-70, north on Grandview, east on 5th, north on Olentangy River, east on
Dodridge, north on High, west on Kelso, south on Neil. Depending on traffic. We live in Urbana
now.

1

8. SHORTEST PATHS

in different directions. (At one time, there was a speed trap on I-70 just east of
the Indiana/Ohio border, but only for eastbound traffic.)

8.1 Shortest Path Trees

Almost every algorithm known for computing shortest paths from one vertex to
another actually solves (large portions of) the following more general single
source shortest path or SSSP problem: Find shortest paths from the source
vertex s to every other vertex in the graph. This problem is usually solved by
finding a shortest path tree rooted at s that contains all the desired shortest
paths.

It’s not hard to see that if shortest paths are unique, then they form a tree,
because any subpath of a shortest path is itself a shortest path. If there are
multiple shortest paths to some vertices, we can always choose one shortest
path to each vertex so that the union of the paths is a tree. If there are shortest
paths from s to two vertices u and v that diverge, then meet, then diverge again,
we can modify one of the paths without changing its length, so that the two
paths only diverge once.

s a

b c

x y

d

u

v

Figure 8.1. If s�a�b�c�d�v (solid) and s�a�x�y�d�u (dashed) are shortest paths, then
s�a�b�c�d�u (along the top) is also a shortest path.

Although they are both optimal spanning trees, shortest-path trees and
minimum spanning trees are very different creatures. Shortest-path trees are
rooted and directed; minimum spanning trees are unrooted and undirected.
Shortest-path trees are most naturally defined for directed graphs; minimum
spanning trees are more naturally defined for undirected graphs. If edge weights
are distinct, there is only one minimum spanning tree, but every source vertex
induces a different shortest-path tree; moreover, it is possible for every shortest
path tree to use a different set of edges from the minimum spanning tree.

♥8.2 Negative Edges

For most shortest-path problems, where the edge weights correspond to distance
or length or time, it is natural to assume that all edge weights are non-negative,
or even positive. However, for many applications of shortest-path algorithms,
it is natural to consider edges with negative weight. For example, the weight

2

♥8.2. Negative Edges

8 5
10

2 3
18

12

14

4

30
16

26

8 5
10

2 3
18

12

14

4

30
16

26

Figure 8.2. A minimum spanning tree and a shortest path tree of the same undirected graph.

of an edge might represent the cost of moving from one vertex to another, so
negative-weight edges represent transitions with negative cost, or equivalently,
transitions that earn a profit.

Negative edges are a thorn in the side of most shortest-path problems,
because the presence of a negative cycle might imply that shortest paths may not
be well-defiend. To be precise, a shortest path from s to t exists if and only if
there is at least one path from s to t, but there is no path from s to t that touches
a negative cycle. For any path from s to t that touches a negative cycle, there is
a shorter path from s to t that goes around the cycle one more time.2 Thus, if
at least one path from s to t touches a negative cycle, there is no shortest path
from s to t.

5

2 –8

14

3
s t

Figure 8.3. There is no shortest walk from s to t .

In part because we need to consider negative edge weights, this chapter
explicitly considers only directed graphs. All of the algorithms described here
also work for undirected graphs with essentially trivial modifications, if and
only if negative edges are prohibited. Correctly handling negative edges in
undirected graphs is considerably more subtle. We cannot simply replace every
undirected edge with a pair of directed edges, because this would transform any
negative edge into a short negative cycle. Subpaths of an undirected shortest path
that contains a negative edge are not necessarily shortest paths; consequently,
the set of all undirected shortest paths from a single source vertex may not
define a tree, even if shortest paths are unique.

2Technically, we should be discussing shortest walks here, rather than shortest paths, but the
abuse of terminology is standard. If s can reach t, there must be a shortest simple path from s
to t; it’s just NP-hard to compute (when there are negative cycles), by an easy reduction from the
Hamiltonian path problem. On the other hand, if there is a shortest walk from s to t, that walk
must be a simple path, and therefore must be the shortest simple path from s to t. Blerg.

3

8. SHORTEST PATHS

s

u v

1 1

–1

s

u v

1 1

–1

s

u v

1 1

–1

Figure 8.4. An undirected graph where shortest paths from s are unique but do not define a tree.

A complete treatment of undirected graphs with negative edges is beyond
the scope of this book. I will only mention, for people who want to follow up
via Google, that a single shortest path in an undirected graph with negative
edges can be computed in O(V E + V 2 log V) time, by a reduction to maximum
weighted matching.

8.3 The Only SSSP Algorithm

Just like graph traversal and minimum spanning trees, many different SSSP
algorithms can be described as special cases of a single generic algorithm, first
proposed by Lester Ford in 1956 and independently described by George Dantzig
in 19573 and again by George Minty in 1958. Each vertex v in the graph stores
two values, which (inductively) describe a tentative shortest path from s to v.
• dist(v) is the length of the tentative shortest s⇝v path, or∞ if there is no

such path.

• pred(v) is the predecessor of v in the tentative shortest s⇝v path, or Null
if there is no such vertex.

The predecessor pointers automatically define a tentative shortest-path tree
rooted at s; these pointers are exactly the same as the parent pointers in
our generic graph traversal algorithm. At the beginning of the algorithm, we
initialize the distances and predecessors as follows:

InitSSSP(s):
dist(s)← 0
pred(s)← Null
for all vertices v ̸= s

dist(v)←∞
pred(v)← Null

During the execution of the algorithm, an edge u�v is tense if dist(u)+w(u�v)<
dist(v). If u�v is tense, the tentative shortest path s⇝v is clearly incorrect,
because the path s⇝u�v is shorter. We can correct (or at least improve) this
obvious overestimate by relaxing the edge as follows:

3Specifically, Dantzig showed that the shortest path problem can be phrased as a linear
programming problem, and then described an interpretation of his simplex method in terms of
the original graph. His description is (morally) equivalent to Ford’s relaxation strategy.

4

8.3. The Only SSSP Algorithm

Relax(u�v):
dist(v)← dist(u) +w(u�v)
pred(v)← u

Now that everything is set up, Ford’s generic algorithm has a simple one-line
description:

Repeatedly relax tense edges, until there are no more tense edges.

FordSSSP(s):
InitSSSP(s)
while there is at least one tense edge

Relax any tense edge

If FordSSSP eventually terminates (because there are no more tense edges),
then the predecessor pointers correctly define a shortest-path tree, and each
value dist(v) is the actual shortest-path distance from s to v. In particular, if s
cannot reach v, then dist(v) =∞, and if any negative cycle is reachable from s,
then the algorithm never terminates.

The correctness of Ford’s generic algorithm follows from the following series
of simpler claims:

1. At any moment during the execution of the algorithm, for every vertex v,
the distance dist(v) is either∞ or the length of a walk from s to v. This
claim can be proved by induction on the number of relaxations.

2. If the graph has no negative cycles, then dist(v) is either∞ or the length
of some simple path from s to v. Specifically, if dist(v) is the length of
a walk from s to v that contains a directed cycle, that cycle must have
negative length. This claim implies that if G has no negative cycles, the
relaxation algorithm eventually halts, because there are only a finite
number of simple paths in G.

3. If no edge in G is tense, then for every vertex v, the distance dist(v)
is the length of the predecessor path s� · · ·pred(pred(v))�pred(v)�v.
Specifically, if v violates this condition but its predecessor pred(v) does
not, the edge pred(v)�v is tense.

4. If no edge in G is tense, then for every vertex v, the path of predecessor
edges s� · · ·�pred(pred(v))�pred(v)�v is in fact a shortest path from s
to v. Specifically, if v violates this condition but its predecessor u in some
shortest path does not, the edge u�v is tense. This claim also implies
that if G has a negative cycle, then some edge is always tense, so the
generic algorithm never halts.

So far I haven’t said anything about how to find tense edges, or which tense
edge(s) to relax if there is more than one. Just like whatever-first search, there

5

8. SHORTEST PATHS

are several different instantiations of Ford’s generic relaxation algorithm. Unlike
whatever-first search, however, the efficiency and correctness of each search
strategy depends on the structure of the input graph.

The rest of this chapter considers the four most common instantiations
of Ford’s algorithm, each of which is the best choice for a different class of
input graphs. I’ll leave the remaining details of the generic correctness proof
as exercises, and instead give (more informative, self-contained) correctness
proofs for each of these four specific algorithms.

8.4 Unweighted Graphs: Breadth-First Search

In the simplest special case of the shortest path problem, all edges have weight 1,
and the length of a path is just the number of edges. This special case can be
solved by a species of our generic graph-traversal algorithm called breadth-first
search. Breadth-first search is often attributed to Edward Moore, who described
it in 1957 (as “Algorithm A”) as the first published method to find the shortest
path through a maze.4 Especially in the context of VLSI wiring and robot path
planning, breadth-first search is sometimes attributed to Chin Yang Lee, who
described several applications of Moore’s “Algorithm A” (with proper credit to
Moore) in 1961. However, in 1945, more than a decade before Moore considered
mazes, Konrad Zuse described an implementation of breadth-first search, as a
method to count and label the components of a disconnected graph.6

4Moore was motivated by a weakness in Claude Shannon’s maze-solving robot “Theseus”,
which Shannon designed and constructed in 1950. (Theseus used a memoized version of
depth-first search, implemented using electromechanical relays; this was almost certainly the
first implementation of depth-first search in graphs.) According to Moore, “When this machine
was used with a maze which had more than one solution, a visitor asked why it had not been
built to always find the shortest path. Shannon and I each attempted to find economical methods
of doing this by machine. He found several methods suitable for analog computation,5 and I
obtained these algorithms.”

5Analog methods for computing shortest paths through mazes have been proposed using
ball bearings, fluid/plasma flow, chemical reaction waves, chemotaxis, resistor networks, electric
circuits with LEDs, memristor networks, glow discharge in microfluidic chips, growing plants,
slime mold, amoebas, ants, bees, nematodes, and tourists.

6Konrad Zuse was one of the early pioneers of computing; he designed and built his first
programmable computer (later dubbed the Z1) in the late 1930s from metal strips and rods in his
parents’ living room; the Z1 and its original blueprints were destroyed by a British air raid in 1944.
Zuse’s 1945 PhD thesis describes the very first high-level programming language, called Plankalkül.
The first complete example of a Plankalkül program in Zuse’s thesis is an implementation of
breadth-first search to count components, along with a pseudocode explanation and an illustrated
step-by-step trace of the algorithm’s execution on a disconnected graph with eight vertices. Due
to the collapse of the Nazi government, Zuse was unable to submit his PhD thesis, and Plankalkül
remained unpublished until 1972. The first Plankalkül compiler was finally implemented in 1975
by Joachim Hohmann.

6

8.4. Unweighted Graphs: Breadth-First Search

Breadth-first search maintains a first-in-first-out queue of vertices, which
initially contains only the source vertex s. At each iteration, the algorithm Pulls
a vertex u from the front of the queue and examines each of its outgoing edges
u�v. Whenever the algorithm discovers an outgoing tense edge u�v, it relaxes
that edge and Pushes vertex v onto the queue. The algorithm ends when the
queue becomes empty.

BFS(s):
InitSSSP(s)
Push(s)
while the queue is not empty

u← Pull()
for all edges u�v

if dist(v)> dist(u) + 1 〈〈if u�v is tense〉〉
dist(v)← dist(u) + 1 〈〈relax u�v〉〉pred(v)← u
Push(v)

Breadth-first search is somewhat easier to analyze if we break its execution
into phases, by introducing an imaginary token. Before we Pull any vertices,
we Push the token into the queue. The current phase ends when we Pull the
token out of the queue; we begin the next phase when we Push the token into
the queue again. Thus, the first phase consists entirely of scanning the source
vertex s. The algorithm ends when the queue contains only the token. The
modified algorithm is shown in Figure 8.5, and Figure 8.6 shows an example of
this algorithm in action. Let me emphasize that these modifications are merely
a convenience for analysis; with or without the token, the algorithm Pushes and
Pulls vertices in the same order, scans edges in the same order, and outputs
exactly the same distances and predecessors.

BFSWithToken(s):
InitSSSP(s)
Push(s)
Push(✠) 〈〈start the first phase〉〉
while the queue contains at least one vertex

u← Pull()
if u = ✠

Push(✠) 〈〈start the next phase〉〉
else

for all edges u�v
if dist(v)> dist(u) + 1 〈〈if u�v is tense〉〉

dist(v)← dist(u) + 1 〈〈relax u�v〉〉pred(v)← u
Push(v)

Figure 8.5. Breadth-first search with an end-of-phase token (✠); bold red lines are only for analysis.

7

8. SHORTEST PATHS

s

a d
b c

f
e g

h

1

1

s

a d
b c

f
e g

h

2

2

2

s

a d
b c

f
e g

h

e

∞

∞

∞

∞

∞

0

∞

∞

∞

∞

∞

∞
∞

∞

∞

∞

1

1

∞

∞

s ✠ b d ✠

 h ✠

c a g ✠

0 0

s

a d
b c

f
e g

h

2

1

2

1

2

4

3

0

3

1

s

a d

b c

f
g

h

3

2

1

2
3

2

∞

0

 f e ✠

s

a d
b c

f
eg

h

2

1

2

1

2

4

3

0

3

Figure 8.6. A complete run of breadth-first search in a directed graph. Vertices are pulled from the
queue in the order s ✠ b d ✠ c a g ✠ f e ✠ h ✠ ✠, where ✠ is the end-of-phase token. Bold vertices are
in the queue at the end of each phase. Bold edges describe the evolving shortest path tree.

Let me emphasize that in the following lemma, dist(v) is just a variable
maintained by the algorithm. While dist(v) intuitively represents a tentative
shortest-path distance, we cannot assume (yet) that dist(v) is ever actually equal
to the true shortest-path distance from s to v. Don’t worry; we’ll get there.

Lemma 8.1. For every integer i ≥ 0 and every vertex v, at the end of the ith
phase, either dist(v) =∞ or dist(v) ≤ i, and v is in the queue if and only if
dist(v) = i.

Proof: The proof proceeds by induction on i. The base case i = 0 is straight-
forward: At the start of the first phase (“at the end of the zeroth phase”), the
queue contains only the start vertex s and the token ✠, and InitSSSP just set
dist(s)← 0 and dist(v)←∞ for all v ̸= s.

So fix an integer i > 0. The inductive hypothesis implies that at the start of
the ith phase, the queue contains every vertex u with dist(u) = i − 1, followed
by the token ✠. In other words, the queue looks like this:

➔ ✠ i − 1 i − 1 · · · i − 1 ➔

Thus, before we Pull the token ✠ from the queue, ending the ith phase, we
Pull every vertex u with dist(u) = i − 1.

For each such vertex u, we consider every outgoing edge u�v. If u�v is
tense, we set dist(v)← dist(u) + 1, so that dist(v) = i, and then immediately

8

8.4. Unweighted Graphs: Breadth-First Search

Push v into the queue. These are the only assignments to distance labels
during the ith phase. Thus, by induction, during the entire ith phase, the queue
contains some vertices with distance label i−1, followed by the token, followed
by some vertices with distance label i:

➔ i · · · i ✠ i − 1 · · · i − 1 ➔

In particular, just before the ith phase ends, the queue contains the token,
followed by some vertices with distance label i.

➔ i i · · · i ✠ ➔

Moreover, vertex v appears in this final queue if and only if dist(v) was changed
during the ith phase. Thus, at the end of the ith phase, the queue contains every
vertex v with dist(v) = i. □

Lemma 8.1 implies that the main body of BFS assigns distance labels in non-
decreasing order; on the other hand, the distance label dist(v) of each vertex v
never increases. It follows that for each vertex v, the line “dist(v)← dist(u) + 1”
is executed at most once, during phase dist(v). Similarly:

• Each predecessor pointer pred(v) is changed at most once, during phase
dist(v).

• Each vertex v is Pushed into the queue at most once, during phase dist(v).
• Each vertex u is Pulled from the queue at most once, during phase dist(u)+1.
• For each edge u�v, the comparison “is dist(v)> dist(u) + 1” is performed

at most once, during phase dist(u) + 1.

Altogether, these observations imply that breadth-first search runs in O(V + E)
time. Intuitively, we can think of the vertices in the queue as a “wavefront”
expanding monotonically outward from the source vertex s, passing over each
vertex and edge of the graph at most once. This expanding wavefront analogy
was already proposed by Chin Yang Lee in 1961, inspired by visualizations
produced by his implementation of Moore’s Algorithm A.

These observations also imply that we can replace the condition “if dist(v)>
dist(u) + 1” by the (arguably) simpler test “if dist(v) =∞”. Then distances
play the same role as the marks maintained by other graph-traversal algorithms,
which ensure that each vertex is visited only once. Specifically, a vertex is
“marked” if and only if its distance label is finite.

But we still need to prove that the final distance labels are correct!

Theorem 8.2. When BFS ends, dist(v) is the length of the shortest path in G
from s to v, for every vertex v.

9

8. SHORTEST PATHS

Proof: Fix an arbitrary vertex v, and consider an arbitrary path v0�v1� · · ·�vℓ
in G, where v0 = s and vℓ = v. I claim that dist(v j) ≤ j for each index j; in
particular dist(v)≤ ℓ. We can prove this claim by induction on j as follows.
• Trivially dist(v0) = dist(s) = 0.

• For any index j > 0, the induction hypothesis implies dist(v j−1) ≤ j − 1.
Immediately after we Pull vertex v j−1 from the queue, either dist(v j) ≤
dist(v j−1) + 1 already, or we set dist(v j)← dist(v j−1) + 1. In either case, we
have dist(v j)≤ dist(v j−1) + 1≤ j.

We just proved that dist(v) is at most the length of an arbitrary path from s to v;
it follows that dist(v) is at most the length of the shortest path from s to‘v.

A similar induction proof implies that dist(v) is the length of the predecessor
path s� · · ·�pred(pred(v))�pred(v)�v, so this must be the shortest path. □

8.5 Directed Acyclic Graphs: Depth-First Search

Shortest paths are also easy to compute in directed acyclic graphs, even when
the edges are weighted, and in particular, even when some edges have negative
weight. (We don’t have to worry about negative cycles, because by definition,
dags don’t have any cycles!) Indeed, this is a completely standard dynamic
programming algorithm.

Let G be a directed graph with weighted edges, and let s be the fixed start
vertex. For any vertex v, let dist(v) denote the length of the shortest path in G
from s to v. This function satisfies the following simple recurrence:

dist(v) =

¨

0 if v = s

min
u�v
(dist(u) +w(u�v)) otherwise

In fact, this identity holds for all directed graphs, but it is only a recurrence
for directed acyclic graphs. If the input graph G contained a cycle, a recursive
evaluation of this function would fall into an infinite loop; however, because G
is a dag, each recursive call visits an earlier vertex in topological order.

The dependency graph for this recurrence is the reversal of the input graph G:
subproblem dist(v) depends on dist(u) if and only if u�v is an edge in G. Thus,
we compute the distance of every in O(V + E) time by performing a depth-first
search in the reversal of G and considering vertices in postorder. Equivalently,
we can consider the vertices in the original graph G in topological order, as
shown in Figure 8.7.

The resulting dynamic-programming algorithm is another example of Ford’s
generic relaxation algorithm! To make this connection clearer, we can move the
initialization dist(v) outside the main loop and add computation of predecessor
pointers, as shown in Figure 8.8. Figure 8.9 shows this algorithm in action.

10

8.5. Directed Acyclic Graphs: Depth-First Search

DagSSSP(s):
for all vertices v in topological order

if v = s
dist(v)← 0

else
dist(v)←∞
for all edges u�v

if dist(v)> dist(u) +w(u�v) 〈〈if u�v is tense〉〉
dist(v)← dist(u) +w(u�v) 〈〈relax u�v〉〉

Figure 8.7. Computing shortest paths in a dag using dynamic programming

DagSSSP(s):
InitSSSP(s)
for all vertices v in topological order

for all edges u�v
if u�v is tense

Relax(u�v)

Figure 8.8. Computing shortest paths in a dag using Ford’s algorithm. (These are the same algorithm.)

1

–3

1

0

5 10

–2

8

7

6

12

3
∞0 ∞∞ ∞∞ ∞

1

–3

1

0

5 10

–2

8

7

6

12

3
∞0 ∞∞ ∞3 ∞1

–3

1

0

5 10

–2

8

7

6

12

3 ∞0 ∞∞ ∞3 8

1

–3

1

0

5 10

–2

8

7

6

12

3 ∞0 ∞6 ∞3 8 1

–3

1

0

5 10

–2

8

7

6

12

3 ∞0 ∞6 133 8

1

–3

1

0

5 10

–2

8

7

6

12

3 ∞0 86 133 8

1

–3

1

0

5 10

–2

8

7

6

12

3
∞0 ∞∞ ∞∞ ∞

1

–3

1

0

5 10

–2

8

7

6

12

3 90 86 133 8

Figure 8.9. Computing shortest paths in a dag, by relaxing incoming edges in topological order. In
each iteration, bold edges indicate predecessors, and the bold vertex is about to be scanned. Compare
with Figure 8.10.

.

11

8. SHORTEST PATHS

DagSSSP differs from breadth-first search and other instances of Ford’s
relaxation strategy in one minor respect. Whenever these other shortest-path
algorithms consider a vertex, they attempt to relax each of its outgoing edges,
intuitively pushing the wavefront forward from the source; whereas, DagSSSP
attempts to relax each of the incoming edges of each vertex, intuitively pulling
the wavefront forward.

However, if we modify DagSSSP to relax outgoing edges instead of incoming
edges, we obtain another algorithm that computes shortest paths in dags
in O(V + E) time and that more closely resembles our other shortest-path
algorithms.

PushDagSSSP(s):
InitSSSP(s)
for all vertices u in topological order

for all outgoing edges u�v
if u�v is tense

Relax(u�v)

Figure 8.10 shows an execution of this modified algorithm on the same
graph as Figure 8.9. The correctness of PushDagSSSP follows immediately from
the correctness of Ford’s general relaxation strategy, but it’s not hard to prove
correctness directly, by induction over the vertices in topological order.

8.6 Best-First: Dijkstra’s Algorithm

If we replace the FIFO queue in breadth-first search with a priority queue, where
the key of a vertex v is its tentative distance dist(v), we obtain an algorithm
first “published” in 1957 by a team of researchers at the Case Institute of
Technology led by Michael Leyzorek, in an annual project report for the Combat
Development Department of the US Army Electronic Proving Ground. The same
algorithm was independently discovered by Edsger Dijkstra in 1956 (but not
published until 1959), again by George Minty some time before 1960, and again
by Peter Whiting and John Hillier in 1960. A nearly identical algorithm was
also described by George Dantzig in 1958. Although several early sources called
it “Minty’s algorithm”, this approach is now universally known as “Dijkstra’s
algorithm”, in full accordance with Stigler’s Law.7 Pseudocode for this algorithm
is shown in Figure 8.11.

An easy induction proof implies that, at all times during the execution of this
algorithm, an edge u�v is tense if and only if vertex u is either in the priority

7I will follow this common convention, despite the historical inaccuracy, partly because I
don’t think anybody wants to read about the “Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-Seitz-
Dantzig-Dijkstra-Minty-Whiting-Hillier algorithm”, and partly because papers that aren’t actually
published don’t count.

12

8.6. Best-First: Dijkstra’s Algorithm

1

–3

1

0

5 10

-2

8

7

6

12

3 ∞0 ∞7 ∞3 8

1

–3

1

0

5 10

–2

8

7

6

12

3 ∞0 ∞7 153 81

–3

1

0

5 10

–2

8

7

6

12

3 ∞0 86 133 8

1

–3

1

0

5 10

–2

8

7

6

12

3 ∞0 86 133 8 1

–3

1

0

5 10

–2

8

7

6

12

3 100 86 133 8

1

–3

1

0

5 10

–2

8

7

6

12

3 90 86 133 8

1

–3

1

0

5 10

-2

8

7

6

12

3 ∞0 ∞∞ ∞∞ ∞

1

–3

1

0

5 10

–2

8

7

6

12

3 90 86 133 8

Figure 8.10. Computing shortest paths in a dag, by relaxing outgoing edges in topological order. In
each iteration, bold edges indicate predecessors, and the bold vertex is about to be scanned. Compare
with Figure 8.9.

Dijkstra(s):
InitSSSP(s)
Insert(s, 0)
while the priority queue is not empty

u← ExtractMin()
for all edges u�v

if u�v is tense
Relax(u�v)
if v is in the priority queue

DecreaseKey(v,dist(v))
else

Insert(v,dist(v))
Figure 8.11. Dijkstra’s algorithm.

13

8. SHORTEST PATHS

queue or is the vertex most recently Extracted from the priority queue. Thus,
Dijkstra’s algorithm is an instance of Ford’s general strategy, which implies that
it correctly computes shortest paths, provided there are no negative cycles in G.

No Negative Edges

Dijkstra’s algorithm is particularly well-behaved when the input graph has no
negative-weight edges. In this setting, the algorithm intuitively expands a
wavefront outward from the source vertex s, passing over vertices in increasing
order of their distance from s, similarly to breadth-first search. Figure 8.12
shows the algorithm in action.

3 2

1

0 5
10

8

4

4

7
12

3

3 2

1

0
10

8

4

7

3

3 2

1

0 5
10

8

4

4

7
12

3

3 2

1

0 5
10

8

4

4

7
12

3

3 2

1

0 5
10

8

4

4

7
12

3

∞

0

∞

∞

∞

∞

∞
5

4

12

∞

0

∞

∞

∞

3

4

∞

0

∞

∞

15

3

4

∞

0

4

∞

9

3

4

7

0

4

14

9

3

4

Figure 8.12. The first four iterations of Dijkstra’s algorithm on a graph with no negative edges. In
each iteration, bold edges indicate predecessors; shaded vertices are in the priority queue; and the
bold vertex is about to be scanned. The remaining iterations do not change the distances or the
shortest-path tree.

We can derive a self-contained proof of correctness for Dijkstra’s algorithm
in this setting by formalizing this wavefront intuition. For each integer i, let ui
denote the vertex returned by the ith call to ExtractMin, and let di be the
value of dist(ui) just after this Extraction. In particular, we have u1 = s and
d1 = 0. We cannot assume at this point that the vertices ui are distinct; in
principle, the same vertex might be Extracted more than once.

Lemma 8.3. If G has no negative-weight edges, then for all i < j, we have
di ≤ d j .

14

8.6. Best-First: Dijkstra’s Algorithm

Proof: Assume G has no negative weight edges. Fix an arbitrary index i; to
prove the lemma, it suffices to prove that di+1 ≥ di. There are two cases to
consider.

• If G contains the edge ui�ui+1, and this edge is relaxed during the ith
iteration of the main loop, then at the end of the ith iteration, we have
dist(ui+1) = dist(ui) + w(ui�ui+1) ≥ dist(ui), because all edge weights are
non-negative.

• Otherwise, at the start of the ith iteration, ui+1 must already be in the
priority queue, and it must have priority dist(ui+1)≥ dist(ui), because ui is
the vertex returned by ExtractMin. Moreover, dist(ui+1) does not change
during the ith iteration.

In both cases, we conclude that di+1 ≥ di . The lemma now follows immediately
by induction on i. □

Lemma 8.4. If G has no negative-weight edges, each vertex of G is Extracted
from the priority queue at most once.

Proof: Suppose v is Extracted more than once. Specifically, suppose v is
Extracted in the ith iteration of the main loop, reInserted during the jth
iteration, and reExtracted during the kth iteration, for some indices i < j < k.
Then in the notation of the previous proof, we have v = ui = uk.

The distance label dist(v) never increases. Moreover, dist(v) strictly decreases
during the jth iteration, just before v is reInserted. It follows that di > dk.
Therefore, by the previous lemma, G has at least one negative-weight edge. □

Lemma 8.4 immediately implies that each vertex is scanned at most once,
and thus that each edge is relaxed at most once. However, unlike in breadth-first
search, each distance label dist(v) can change multiple times. The first time
dist(v) changes from∞, we Insert v into the priority queue; after that, each
change to dist(v) is followed by a call to DecreaseKey. After v is Extracted
from the priority queue, its distance label never changes.

The rest of the correctness proof is almost identical to breadth-first search.

Theorem 8.5. If G has no negative-weight edges, then when Dijkstra ends,
dist(v) is the length of the shortest path in G from s to v, for every vertex v.

Proof: Fix an arbitrary vertex v, and consider an arbitrary path v0�v1� · · ·�vℓ
in G, where v0 = s and vℓ = v. For any index j, let L j denote the length of the
subpath v0�v1� · · ·�v j . We prove by induction that dist(v j)≤ L j for all j.

• Trivially dist(v0) = dist(s) = 0= L0.

15

8. SHORTEST PATHS

• For any index j > 0, the induction hypothesis implies dist(v j−1) ≤ L j−1.
Immediately after we Pull vertex v j−1 from the queue, either dist(vi) ≤
dist(v j−1)+w(v j−1�v j) already, or we set dist(vi)← dist(v j−1)+w(v j−1�v j).
In either case, we have

dist(v j) ≤ dist(v j−1) +w(v j−1�v j) ≤ L j−1 +w(v j−1�v j) = L j .

We just proved that dist(v) is at most the length of every path from s to v; it
follows that dist(v) is at most the length of the shortest path from s to v.

On the other hand, a similar induction proof implies that dist(v) is the length
of the predecessor path s� · · ·�pred(pred(v))�pred(v)�v. □

It remains only to bound the algorithm’s running time. Altogether Dijkstra
performs at most E DecreaseKey operations, and at most V Insert and
ExtractMin operations. Thus, if we implement the underlying priority queue
using a standard binary heap, which supports each operation in O(log V) time,
Dijkstra runs in O(E log V) time.8

If we know in advance that our input graphs will never have negative edges,
we can simplify Dijkstra’s algorithm slightly, by Inserting every vertex into the
priority queue in the initialization phase, and then only calling DecreaseKey in
the main loop, as shown in Figure 8.13. This is the version of Dijkstra’s algorithm
presented by most algorithms textbooks, Wikipedia, and even Dijkstra’s original
paper; it’s also the version of Dijkstra’s algorithm that I described as “best-first
search” in Chapter ??.

♥Negative Edges

However, NonnegativeDijkstra does not correctly compute shortest paths
in graphs with negative edges. Moreover, even when all edge weights are
positive, NonnegativeDijkstra is no faster than Dijkstra (either in theory
or in practice). For both of these reasons, I think Dijkstra is more deserving
of the name “Dijkstra’s algorithm” than NonnegativeDijkstra. Even Edsger
Dijkstra would have agreed that a correct algorithm that is sometimes (and in
practice, rarely) slow is better than a fast algorithm that doesn’t always work!

8Shortest-path papers from the 1950s never mentioned priority queues. Dijkstra proposed a
brute-force scan of all vertices on the wavefront at every iteration; his original algorithm runs
in O(V2) time, which is actually faster than the binary-heap implementation when E = Ω(V 2)!
Minty proposed a brute-force scan of all edges u�v such that dist(u) is finite but dist(v) is not;
thus, his original algorithm runs in O(V E) time. The use of a priority queue, implemented as
a binary heap, to obtain near-linear running time was proposed by Donald Johnson in 1977.
The running time can be improved to O(E + V log V) using a more complex priority queue data
structure called a Fibonacci heaps. There are even faster algorithms, using even more sophisticated
priority queues, for the special case of integer edge weights.

16

8.7. Relax ALL the Edges: Bellman-Ford

NonnegativeDijkstra(s):
InitSSSP(s)
for all vertices v

Insert(v,dist(v))
while the priority queue is not empty

u← ExtractMin()
for all edges u�v

if u�v is tense
Relax(u�v)
DecreaseKey(v,dist(v))

Figure 8.13. Dijkstra’s algorithm very slightly simplified for graphs without negative edges. Differences
from Dijkstra are bold red.

Unfortunately, when the input graph has negative edges, the familiar
“expanding wavefront” intuition is no longer accurate. The same vertex can be
Extracted multiple times; the same edge can be relaxed multiple times; and
distances might not be discovered in increasing order. Figure 8.15 shows an
example execution where the top left vertex is Extracted six times, and the
top three edges are each relaxed twice.

For graphs without negative cycles, but no other restrictions on edge weights,
the worst-case running time of Dijkstra is actually exponential. Figure 8.14
shows particularly simple family of graphs (due to Douglas Shier and Christoph
Witzgall) that forces Dijkstra to performΘ(2V/2) relaxations.9 Amore complex
family of graphs (which I’ll leave as an exercise) forces Θ(2V) relaxations, which
is the worst possible. In practice, however, Dijkstra’s algorithm is usually fast
even for graphs with negative edges.

–1–2–4–8

0 –16 0 –8 –4 –20 0

–2k–1

0 –2k

Figure 8.14. A directed graph with negative edges that forces DIJKSTRA to run in exponential time.

8.7 Relax ALL the Edges: Bellman-Ford

The simplest implementation of Ford’s generic shortest-path algorithm was
first sketched by Alfonso Shimbel in 1954, described in more detail by Edward
Moore in 1957, and independently rediscovered by Max Woodbury and George
Dantzig in 1957, by Richard Bellman in 1958, and by George Minty in 1958.

9Amusingly, Shier and Witzgall’s example is a dag with only O(V) edges, which implies that
shortest paths can be computed in only O(V) time, even if we didn’t already notice that the
zig-zag path along the top is the shortest path tree.

17

8. SHORTEST PATHS

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

∞

∞

∞

∞

∞

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

∞

3

∞

4

10

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

5

3

∞

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

5

3

7

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

8

0

4

3

7

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

5

3

7

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

8

0

4

3

7

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

8

0

3

3

7

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

8

0

3

3

7

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

8

0

2

3

4

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

8

0

2

3

4

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

5

0

1

3

4

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

5

0

1

3

4

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

5

0

0

3

4

4

9

–5 1

–3

–7 –5
2

6

10

3

8
3

4

5

0

0

3

4

4

9

Figure 8.15. A complete run of Dijkstra’s algorithm on a graph with negative edges. At each iteration,
bold edges indicate predecessors; shaded vertices are in the priority queue; and the bold vertex is the
next to be scanned. Compare with Figure 8.17.

18

8.7. Relax ALL the Edges: Bellman-Ford

(Neither Woodbury and Dantzig nor Minty published their algorithms.) In full
compliance with Stigler’s Law, the algorithm is almost universally known as
Bellman-Ford,10 because Bellman explicitly used Ford’s 1956 formulation of
relaxing edges, although some authors refer to “Bellman-Kalaba”11 and a few
early sources refer to “Bellman-Shimbel”.

The Shimbel /Moore /Woodbury-Dantzig / Bellman-Ford / Kalaba /Minty /
Brosh12 algorithm can be summarized in one line:

Bellman-Ford: Relax ALL the tense edges, then recurse.

BellmanFord(s)
InitSSSP(s)
while there is at least one tense edge

for every edge u�v
if u�v is tense

Relax(u�v)

The following lemma is the key to proving both correctness and efficiency
of Bellman-Ford. For every vertex v and non-negative integer i, let dist≤i(v)
denote the length of the shortest walk in G from s to v consisting of at most i
edges. In particular, dist≤0(s) = 0 and dist≤0(v) =∞ for all v ̸= s.

Lemma 8.6. For every vertex v and non-negative integer i, after i iterations of
the main loop of BellmanFord, we have dist(v)≤ dist≤i(v).

Proof: The proof proceeds by induction on i. The base case i = 0 is trivial,
so assume i > 0. Fix a vertex v, and let W be the shortest walk from s to v
consisting of at most i edges (breaking ties arbitrarily). By definition, W has
length dist≤i(v). There are two cases to consider.

• Suppose W has no edges. Then W must be the trivial walk from s to s, so
v = s and dist≤i(s) = 0. We set dist(s) ← 0 in InitSSSP, and dist(s) can
never increase, so we always have dist(s)≤ 0.

10I will follow this common convention, despite the historical inaccuracy, partly because I
don’t think anyone really wants read about the “Shimbel /Moore /Woodbury-Dantzig / Bellman-
Ford /Kalaba /Minty algorithm”, and partly because I’m tired of people looking at me funny
when I talk about “Shimbel’s algorithm”.

11This name is most likely a reference to Richard Bellman and Robert Kalaba’s 1965 monograph
on dynamic programming and control theory, which describes Bellman’s algorithm. Bellman and
Kalaba also published an extension of Bellman’s algorithm in 1960 that computes kth shortest
paths, for any constant k.

12Go read everything in Hyperbole and a Half again. And then adopt another cat, so you can
buy it another copy of the book.

19

http://hyperboleandahalf.blogspot.com/

8. SHORTEST PATHS

• Otherwise, let u�v be the last edge of W . The induction hypothesis implies
that after i − 1 iterations, dist(u)≤ dist≤i−1(u). During the ith iteration of
the outer loop, when we consider the edge u�v in the inner loop, either
dist(v) < dist(u) + w(u�v) already, or we set dist(v) ← dist(u) + w(u�v).
In both cases, we have dist(v)≤ dist≤i−1(u)+w(u�v) = dist≤i(v). As usual,
dist(v) cannot increase (although dist(v) might decrease further before the
ith iteration of the outer loop ends).

In both cases, we conclude that dist(v) ≤ dist≤i(v) at the end of the ith
iteration. □

If the input graph has no negative cycles, the shortest walk from s to any
other vertex is a simple path with at most V − 1 edges; it follows that Bellman-
Ford halts with the correct shortest-path distances after at most V −1 iterations.
Said differently, if any edge is still tense after V − 1 iterations, then the input
graph must contain a negative cycle! Thus, we can rewrite the algorithm more
concretely as follows:

BellmanFord(s)
InitSSSP(s)
repeat V − 1 times

for every edge u�v
if u�v is tense

Relax(u�v)
for every edge u�v

if u�v is tense
return “Negative cycle!”

Each iteration of the inner loop trivially requires O(E) time, so the overall
algorithm runs in O(VE) time. Thus, Bellman-Ford is always efficient, even if
the graph has negative edges, and in fact even if the graph has negative cycles.

If all edge weights are non-negative, however, Dijkstra’s algorithm is faster,
at least in the worst case. (In practice, Dijkstra’s algorithm is often faster than
Bellman-Ford even for graphs with negative edges.)

Moore’s Improvement

NeitherMoore nor Bellman described the Bellman-Ford algorithm in the form I’ve
presented here. Moore presented his version of the algorithm ("Algorithm D") in
the same paper that proposed breadth-first search ("AlgorithmA") for unweighted
graphs; indeed, the two algorithms are nearly identical. Although Moore’s
algorithm has the same O(V E) worst-case running time as BellmanFord, it is
often significantly faster in practice, intuitively because it avoids checking edges
that are “obviously” not tense.

20

8.7. Relax ALL the Edges: Bellman-Ford

Moore derived his weighted shortest-path algorithm by making two modifi-
cations to breadth-first search. First, replace each “+1” with “+w(u�v)" in the
innermost loop, to take the edge weights into account. Second, check whether
a vertex is already in the FIFO queue before Inserting it, so that the queue
always contains at most one copy of each vertex.13

Following our earlier analysis of breadth-first search, I’ll introduce a “token”
✠ to break the execution of the algorithm into phases. Just like breadth-first
search, each phase begins when the token is Pushed into the queue, and ends
when the token is Pulled out of the queue again. Just like BFS, the algorithm
ends when the queue contains only the token. The resulting algorithm is shown
in Figure 8.16.

Moore(s):
InitSSSP(s)
Push(s)
Push(✠) 〈〈start the first phase〉〉
while the queue contains at least one vertex

u← Pull()
if u = ✠

Push(✠) 〈〈start the next phase〉〉
else

for all edges u�v
if u�v is tense

Relax(u�v)
if v is not already in the queue

Push(v)
Figure 8.16. Moore’s shortest-path algorithm. Bold red lines involving the token ✠ are only for analysis.

Because the queue contains at most one copy of each vertex at any time,
each vertex is Pulled from the queue at most once in each phase, and therefore
each edge u�v is checked for tenseness at most once in each phase. Moreover,
every edge that is tense when a phase begins is relaxed during that phase.
(Some edges that become tense during the phase might also be relaxed during
that phase, and some relaxed edges might become tense again in the same
phase.) Thus, Moore can be viewed as a refinement of BellmanFord that
uses a queue to maintain tense edges, rather than testing every edge by brute
force. In particular, a similar inductive proof establishes the following analogue
of Lemma 8.6:

Lemma 8.7. For every vertex v and non-negative integer i, after i phases of
Moore, we have dist(v)≤ dist≤i(v).

13Moore’s algorithm is still correct without this check, but the O(V E) time bound is not.

21

8. SHORTEST PATHS

Thus, if the input graph has no negative cycles, Moore halts after at most
V − 1 phases. In each phase, we scan each vertex at most once, so we relax
each edge at most once, so the worst-case running time of a single phase is
O(E). Thus, the overall running time of Moore is O(VE). In practice, however,
Moore often computes shortest paths considerably faster than BellmanFord,
because it only scans an edge u�v if dist(u) was changed in the previous phase.

f

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

∞

∞

∞

∞

∞

s

a

b

c

d

e

f

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

∞

3

∞

4

10

s

a

b

c

d

e

f

–5 1

–3

–7 –5
2

6

10

3

8
3

4

∞

0

2

3

4

4

9

s

a

b

c

d

e

f

–5 1

–3

–7 –5
2

6

10

3

8
3

4

5

0

1

3

4

4

9

s

a

b

c

d

e

f

–5 1

–3

–7 –5
2

6

10

3

8
3

4

5

0

0

3

4

4

9

s

a

b

c

d

e

f

–5 1

–3

–7 –5
2

6

10

3

8
3

4

5

0

0

3

4

4

9

s

a

b

c

d

e

s ✠ a b c ✠

 d ✠

d f ✠

 d e ✠

Figure 8.17. A complete run of Moore’s algorithm on a directed graph with negative edges. Nodes are
pulled from the queue in the order s ✠ a b c ✠ d f ✠ d e ✠ d ✠ ✠, where ✠ is the end-of-phase token.
At the start of each phase, bold edges indicate predecessors, and shaded vertices are in the vertex
queue. Compare with Figures 8.6 and 8.15.

If the input graph contains a negative cycle, Moore never halts. Fortunately,
like BellmanFord, it is easy to modify Moore’s algorithm to report negative
cycles if they exist. Perhaps the easiest modification is to actually maintain a
token, and count the number of times the token is Pulled from the queue. Then
the input graph contains a negative cycle if and only if the queue is non-empty
immediately after the token is Pulled for the (V − 1)th time.

Dynamic Programming Formulation

Like almost everything else with his name on it, Richard Bellman derived the
“Bellman-Ford” shortest-path algorithm via dynamic programming. As usual, we
need to start with a recursive definition of shortest path distances. It’s tempting

22

8.7. Relax ALL the Edges: Bellman-Ford

to use the same identity that we exploited for directed acyclic graphs:

dist(v) =

¨

0 if v = s

min
u�v
(dist(u) +w(u�v)) otherwise

Unfortunately, if the input graph is not a dag, this recurrence doesn’t work!
Suppose the input graph contains the directed cycle u�v�w�u. To compute
dist(w) we first need dist(v), and to compute dist(v) we first need dist(u), but
to compute dist(u) we first need dist(w). If the input graph has any directed
cycles, we get stuck in an infinite loop!

To support a proper recurrence, we need to add an additional structural
parameter to the distance function, which decreases monotonically at each
recursive call, defined so that the function is trivial to evaluate when the
parameter reaches 0. Bellman chose the maximum number of edges as this
additional parameter.14

As in our earlier analysis, let dist≤i(v) denote the length of the shortest walk
from s to v consisting of at most i edges. Bellman observed that this function
obeys the following Bellman’s equation recurrence:

dist≤i(v) =

0 if i = 0 and v = s

∞ if i = 0 and v ̸= s

min

¨

dist≤i−1(v)
min
u�v
(dist≤i−1(u) +w(u�v))

«

otherwise

Let’s assume that the graph has no negative cycles, so our goal is to compute
dist≤V−1(v) for every vertex v. Here is a straightforward dynamic-programming
evaluation of this recurrence, where dist[i, v] stores the value of dist≤i(v).
Correctness of the final shortest-path distances follows from the correctness of
the recurrence, and the O(V E) running time is obvious. This is essentially how
Bellman presented his shortest-path algorithm.

BellmanFordDP(s)
dist[0, s]← 0
for every vertex v ̸= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]
for every edge u�v

if dist[i, v]> dist[i − 1, u] +w(u�v)
dist[i, v]← dist[i − 1, u] +w(u�v)

14As we’ll see in the next chapter, this is not the only reasonable choice.

23

8. SHORTEST PATHS

We can transform this dynamic programming algorithm into our original
formulation of BellmanFord through a short series of minor optimizations.
First, each iteration of the outermost loop considers each edge u�v exactly once,
but the order in which we consider those edges doesn’t actually matter. Thus,
we can safely remove one level of indentation from the last three lines! The
modified algorithm may consider edges in a different order, but it still correctly
computes dist≤i(v) for all i and v.

BellmanFordDP2(s)
dist[0, s]← 0
for every vertex v ̸= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]

for every edge u�v
if dist[i, v] > dist[i − 1, u] + w (u�v)

dist[i, v]← dist[i − 1, u] + w (u�v)

Next we change the indices in the last two lines from i − 1 to i. This
change may cause the distances dist[i, v] to approach the true shortest-path
distances more quickly than before, but the algorithm correctly computes the
true shortest path distances. Instead of dist[i, v]= dist≤i(v), we now have
dist[i, v]≤ dist≤i(v) for all i and v, mirroring Lemmas 8.6 and 8.7.

BellmanFordDP3(s)
dist[0, s]← 0
for every vertex v ̸= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]

for every edge u�v
if dist[i, v]> dist[i, u] +w(u�v) 〈〈not i − 1!〉〉

dist[i, v]← dist[i, u] +w(u�v) 〈〈not i − 1!〉〉

But this algorithm is a little silly. In the ith iteration of the outermost loop, we
first copy the (i − 1)th row of the array dist[·, ·] to the ith row, and then modify
the elements of the ith row. So we really don’t need a two-dimensional array at
all; the iteration index i is completely redundant! In our final modification, we
maintain only a one-dimensional array of tentative distances.

24

Exercises

BellmanFordFinal(s)
dist[s]← 0
for every vertex v ̸= s

dist[v]←∞
for i← 1 to V − 1

for every edge u�v
if dist[v]> dist[u]+w(u�v)

dist[v]← dist[u]+w(u�v)

This final dynamic programming algorithm is almost identical to our original
formulation of BellmanFord! The first three lines initialize the shortest path
distances, and the last two lines relax the edge u�v if that edge is tense.
BellmanFordFinal is missing only two features of our earlier formulation: It
does not maintain predecessor pointers or detect negative cycles. Fortunately,
adding those features is straightforward.

Exercises

0. Let G be a directed graph with arbitrary edge weights (which may be positive,
negative, or zero), possibly with negative cycles, and let s be an arbitrary
vertex of G.

(a) Suppose every vertex v stores a number dist(v) (but no predecessor
pointers). Describe and analyze an algorithm to determine whether
dist(v) is the shortest-path distance from s to v, for every vertex v.

(b) Suppose instead that every vertex v ̸= s stores a pointer pred(v) to
another vertex in G (but no distances). Describe and analyze an
algorithm to determine whether these predecessor pointers define a
single-source shortest path tree rooted at s.

1. A looped tree is a weighted, directed graph built from a binary tree by adding
an edge from every leaf back to the root. Every edge has non-negative
weight.

5 8

17 0 1

23 9 14

42416 7

A looped tree.

25

8. SHORTEST PATHS

(a) How much time would Dijkstra’s algorithm require to compute the
shortest path between two vertices u and v in a looped tree with n
nodes?

(b) Describe and analyze a faster algorithm.

2. Suppose we are given a directed graph G with weighted edges and two
vertices s and t.

(a) Describe and analyze an algorithm to find the shortest path from s
to t when exactly one edge in G has negative weight. [Hint: Modify
Dijkstra’s algorithm. Or don’t.]

(b) Describe and analyze an algorithm to find the shortest path from s to t
when exactly k edges in G have negative weight. How does the running
time of your algorithm depend on k?

3. Suppose we are given an undirected graph G in which every vertex has a
positive weight.

(a) Describe and analyze an algorithm to find a spanning tree of G with
minimum total weight. (The total weight of a spanning tree is the sum
of the weights of its vertices.)

(b) Describe and analyze an algorithm to find a path in G from one given
vertex s to another given vertex t with minimum total weight. (The total
weight of a path is the sum of the weights of its vertices.)

[Hint: One of these problems is trivial.]

4. For any edge e in any graph G, let G \ e denote the graph obtained by
deleting e from G. Suppose we are given a graph G and two vertices s
and t. The replacement paths problem asks us to compute the shortest-path
distance from s to t in G \ e, for every edge e of G. The output is an array
of E distances, one for each edge of G.

(a) Suppose G is a directed graph, and the shortest path from vertex s to
vertex t passes through every vertex of G. Describe an algorithm to solve
this special case of the replacement paths problem in O(E log V) time.

♥(b) Describe an algorithm to solve the replacement paths problem for
arbitrary undirected graphs in O(E log V) time.

In both subproblems, you may assume that all edge weights are non-negative.
[Hint: If we delete an edge of the original shortest path, how do the old
and new shortest paths overlap?]

5. Let G = (V, E) be a connected directed graph with non-negative edge weights,
let s and t be vertices of G, and let H be a subgraph of G obtained by deleting

26

Exercises

some edges. Suppose we want to reinsert exactly one edge from G back
into H, so that the shortest path from s to t in the resulting graph is as short
as possible. Describe and analyze an algorithm that chooses the best edge
to reinsert, in O(E log V) time.

6. (a) Describe and analyze amodification of Bellman-Ford that actually returns
a negative cycle if any such cycle is reachable from s, or a shortest-path
tree if there is no such cycle. The modified algorithm should still run in
O(V E) time.

(b) Describe and analyze a modification of Bellman-Ford that computes the
correct shortest path distances from s to every other vertex of the input
graph, even if the graph contains negative cycles. Specifically, if any
walk from s to v contains a negative cycle, your algorithm should end
with dist(v) = −∞; otherwise, dist(v) should contain the length of the
shortest path from s to v. The modified algorithm should still run in
O(V E) time.

♥(c) Repeat parts (a) and (b), but for Ford’s generic relaxation algorithm.
You may assume that the unmodified algorithm halts in O(2V) steps if
there is no negative cycle; your modified algorithms should also run in
O(2V) time.

7. Consider the following even looser variant of Ford’s generic relaxation
algorithm:

FellmanBored(s):
InitSSSP(s)
for i← 1 to whatever, man, I don’t care

ei ← any edge in G
if ei is tense

Relax(ei)

Prove that if FellmanBored examines the edges of any walk W starting
from s, in order along W , then the last distance label in W is at most
the length of W . More formally: If the edges of any walk v0�v1� · · ·�vℓ,
where v0 = s, define a subsequence of the edges e1, e2, e3, . . . examined by
FellmanBored, then we have dist(vℓ) ≤

∑ℓ
i=1 w(vi−1�vi). [Hint: This

property is almost easier to prove than it is to state correctly.]

8. This problem considers several ways to detect negative cycles using Ford’s
generic relaxation algorithm.
(a) Prove that if pred(s) ever changes after InitSSSP, then the input graph

contains a negative cycle through s.
(b) Show that pred(s) might never change after InitSSSP, even when the

input graph contains a negative cycle through s.

27

8. SHORTEST PATHS

(c) Let P denote the current graph of predecessor edges pred(v)�v, and
let X denote the set of all currently tense edges; both of these sets evolve
as the algorithm executes. Prove that the input graph has no negative
cycles if and only if P ∪ X is always a dag.

(d) Let R denote the set of all edges that have been relaxed so far; this set
grows as the algorithm executes. Prove that the input graph has no
negative cycles if and only if R is always a dag.

♥9. Prove that Dijkstra’s algorithm performs Ω(2V) relaxations in the worst case
when edges are allowed to have negative weight, even if the underlying
graph is acyclic. Specifically, for every positive integer n, construct a n-vertex
dag Gn with weighted edges, such that Dijkstra’s algorithm calls Relax Ω(2n)
times when Gn is the input graph. [Hint: Binary counter.]

♥10. Prove that Ford’s generic relaxation algorithm (and therefore Dijkstra’s
algorithm) halts after at most O(2V) relaxations, unless the input graph
contains a negative cycle. [Hint: See Problem 8(d).]

11. Suppose you are given a directed graph G in which every edge has negative
weight, and a source vertex s. Describe and analyze an efficient algorithm
that computes the shortest-path distances from s to every other vertex in G.
Specifically, for every vertex t:

• If t is not reachable from s, your algorithm should report dist(t) =∞.

• If G has a cycle that is reachable from s, and t is reachable from that cycle,
then the shortest-path distance from s to t is not well-defined, because
there are paths (formally, walks) from s to t of arbitrarily large negative
length. In this case, your algorithm should report dist(t) = −∞.

• If neither of the two previous conditions applies, your algorithm should
report the correct shortest-path distance from s to t.

12. Although we typically speak of “the” shortest path between two nodes, single
graph could contain several minimum-length paths with the same endpoints.
Even for weighted graphs, it is often desirable to choose a minimum-weight
path with the fewest edges; call this a best path from s to t. Suppose we are
given a directed graph G with positive edge weights and a source vertex s
in G. Describe and analyze an algorithm to compute best paths in G from s
to every other vertex.

13. Describe and analyze an algorithm to determine the number of shortest
paths from a source vertex s to a target vertex t in an arbitrary directed
graph G with weighted edges. You may assume that all edge weights are

28

Exercises

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

14

1

2

2

3 5

3 2

1

1

1

2

4

2 4

3 5

14 14 14

Figure 8.18. Four (of many) equal-length shortest paths. The first path is the “best” shortest path.

positive and that all necessary arithmetic operations can be performed in
O(1) time. [Hint: Compute shortest path distances from s to every other
vertex. Throw away all edges that cannot be part of a shortest path from s
to another vertex. What’s left?]

14. You just discovered your best friend from elementary school on Twitbook.
You both want to meet as soon as possible, but you live in two different
cites that are far apart. To minimize travel time, you agree to meet at an
intermediate city, and then you simultaneously hop in your cars and start
driving toward each other. But where exactly should you meet?

You are given aweighted graph G = (V, E), where the vertices V represent
cities and the edges E represent roads that directly connect cities. Each
edge e has a weight w(e) equal to the time required to travel between the
two cities. You are also given a vertex p, representing your starting location,
and a vertex q, representing your friend’s starting location.

Describe and analyze an algorithm to find the target vertex t that allows
you and your friend to meet as quickly as possible.

15. You are hired as a cyclist for the Giggle Highway View project, which will
provide street-level images along the entire US national highway system.
As a pilot project, you are asked to ride the Giggle Highway-View Fixed-
Gear Carbon-Fiber Bicycle from “the Giggleplex” in Portland, Oregon to
“Gigglesburg” in Williamsburg, Brooklyn, New York.

You are a hopeless caffeine addict, but like most Giggle employees you
are also a coffee snob; you only drink independently roasted, hand-pulled,
direct-trade, organic, shade-grown, single-origin espresso, unadulterated by
milk or sugar, thank you very much. After each espresso shot, you can bike
up to L miles before suffering a caffeine-withdrawal migraine.

Giggle helpfully provides you with a map of the United States, in the form
of an undirected graph G, whose vertices represent coffee shops that sell
independently roasted hand-pulled direct-trade organic shade-grown single-
origin espresso, and whose edges represent highway connections between
them. Each edge e is labeled with the length ℓ(e) of the corresponding

29

8. SHORTEST PATHS

stretch of highway. Naturally, there are acceptable espresso stands at both
Giggle offices, represented by two specific vertices s and t in the graph G.

(a) Describe and analyze an algorithm to determine whether it is possible
to bike from the Giggleplex to Gigglesburg without suffering a caffeine-
withdrawal migraine.

(b) You discover that by wearing a more expensive fedora, you can increase
the distance L that you can bike between espresso shots. Describe
and analyze and algorithm to find the minimum value of L that allows
you to bike from the Giggleplex to Gigglesburg without suffering a
caffeine-withdrawal migraine.

(c) When you report to your supervisor (whom Giggle recently hired away
from their competitor Ünter) that the ride is impossible, she demands
to look at your map. “Oh, I see the problem; there are no Starbucks on
this map!” As you look on in horror, she hands you an updated graph G′

that includes a vertex for every Starbucks location in the United States,
helpfully marked in Starbucks Green (Pantone® 3425 C).

Describe and analyze an algorithm to find the minimum number
of Starbucks locations you must visit to bike from the Giggleplex to
Gigglesburg without suffering a caffeine-withdrawal migraine. More
formally, your algorithm should find the minimum number of green
vertices on any path in G′ from s to t that uses only edges of length at
most L.

16. Suppose you are given a directed graph G = (V, E) with non-negatively
weighted edges and two vertices s and t. Describe and analyze an algorithm
to find the shortest walk in G from s to t (possibly repeating vertices and/or
edges) whose number of edges is divisible by 3.

For example, given the graph shown below, with the indicated vertices s
and t, and with all edges having weight 1, your algorithm should return 6,
which is the length of the walk s�w�y�x�s�w�t has length 6.

x y

ws

z

t

17. Suppose you are given a directed graph G with non-negatively weighted
edges, where some edges are red and the remaining edges are blue. Describe
an algorithm to find the shortest walk in G from one vertex s to another
vertex t in which no three consecutive edges have the same color. That is, if
the walk contains two red edges in a row, the next edge must be blue, and if
the walk contains two blue edges in a row, the next edge must be red.

30

Exercises

For example, given the following graph as input, where every red
edge has weight 1 and every blue edge has weight 2, your algorithm
should return the integer 9, because the shortest legal walk from s to t is
s→a→b⇒d→c⇒a→b→c.

s a b

c d t

18. Consider a directed graph G, where each edge has a non-negative weight,
and each edge is colored either red, white, or blue. A walk in G is called
a French flag walk if its sequence of edge colors is red, white, blue, red,
white, blue, and so on. More formally, a walk v0�v1� · · ·�vk is a French
flag walk if, for every integer i, the edge vi�vi+1 is red if i mod 3= 0, white
if i mod 3= 1, and blue if i mod 3= 2.

Describe an algorithm to find the shortest French flag walks from one
starting vertex s to every other vertex in G.

19. There are n galaxies connected by m intergalactic teleport-ways. Each
teleport-way joins two galaxies and can be traversed in both directions. Also,
each teleport-way e has an associated cost of c(e) dollars, where c(e) is a
positive integer. A teleport-way can be used multiple times, but the toll must
be paid every time it is used.

Judy wants to travel from galaxy s to galaxy t as cheaply as possible.
However, she wants the total cost to be a multiple of five dollars, because
carrying small change is not pleasant either.

(a) Describe and analyze an algorithm to compute the minimum total cost
of traveling from galaxy s to galaxy t, subject to the restriction that the
total cost is a multiple of five dollars.

(b) Solve part (a), but now assume that Judy has a coupon that allows her
to use exactly one teleport-way for free.

20. After moving to a new city, you decide to choose a walking route from your
home to your new office. To get a good daily workout, your route must
consist of an uphill path (for exercise) followed by a downhill path (to cool
down), or just an uphill path, or just a downhill path. (You’ll walk the same
path home, so you’ll get exercise one way or the other.) But you also want
the shortest path that satisfies these conditions, so that you actually get to
work on time.

Your input consists of an undirected graph G, whose vertices represent
intersections and whose edges represent road segments, along with a start

31

8. SHORTEST PATHS

vertex s and a target vertex t. Every vertex v has an associated value h(v),
which is the height of that intersection above sea level, and each edge uv
has an associated value ℓ(uv), which is the length of that road segment.

(a) Describe and analyze an algorithm to find the shortest uphill–downhill
walk from s to t. Assume all vertex heights are distinct.

(b) Now suppose we allow some or all vertex heights to be equal. Describe
and analyze an algorithm to find the shortest “uphill then downhill” walk
from s to t; you may use flat edges in both the “uphill” and “downhill”
portions of your walk.

(c) Finally, suppose you discover that there is no path from s to t with the
structure you want. Describe an algorithm to find a path from s to t
that alternates between “uphill” and “downhill” subpaths as few times
as possible, and has minimum length among all such paths.

21. After graduating from Sham-Poobanana University you accept a job with
Aerophobes- R-Us, the leading traveling agency for people who hate to fly.
Your job is to build a system to help customers plan airplane trips from one
city to another. All of your customers are afraid of flying (and by extension,
airports), so any trip you plan needs to be as short as possible. You know all
the departure and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city X to city Y .
Describe an algorithm to find a sequence of flights that minimizes the total
time in transit—the length of time from the initial departure to the final
arrival, including time at intermediate airports waiting for connecting flights.

22. In Exercise ?? from Chapter ??, you designed an algorithm to decide
whether a given acute-angle maze is solvable. In this problem, you will
design algorithms to find the shortest walk through a given acute-angle
maze, for two different definitions of "length”.

Complete each angle maze below by tracing a path from start to finish that
has only acute angles.

Start Finish

Start Finish

Your input is a connected undirected graph G whose vertices are points
in the plane and whose edges are line segments. Edges do not intersect,
except at their endpoints. For example, a drawing of the letter X would have
five vertices and four edges; the first maze above has 14 vertices and 21
edges. You are also given two vertices Start and Finish.

32

Exercises

A walk from Start to Finish in G is valid if it contains only acute angles,
or more formally, for any two consecutive edges u�v�w, either ∠uvw= π
or 0< ∠uvw< π/2. Assume you can determine in O(1) time whether the
angle between two given segments is straight, obtuse, right, or acute.

(a) Describe an algorithm to compute a valid walk from Start to Finish that
traverses as few segments as possible. (If your walk traverses the same
segment twice, count it twice.)

(b) Describe an algorithm to compute a valid walk from Start to Finish that
makes as few turns as possible. [Hint: This is not the same as part (a).]

(c) Describe an algorithm to compute a valid walk from Start to Finish whose
total Euclidean length is as small as possible. (Assume you can also
compute the length of any segment in O(1) time.)

23. After a grueling midterm at the See-Bull Center for Fake News Detection,
you decide to take the bus home. Since you planned ahead, you have a
schedule that lists the times and locations of every stop of every bus in
Sham-Poobanana. Unfortunately, no single bus visits both the See-Bull
Center and your home; you must change buses at least once. There are
exactly b different buses. Each bus starts at 12:00:01am, makes exactly n
stops, and finally stops running at 11:59:59pm. Buses always run exactly on
schedule, and you have an accurate watch. Finally, you are far too tired to
walk between bus stops.

(a) Describe and analyze an algorithm to determine the sequence of bus
rides that gets you home as early as possible. Your goal is to minimize
your arrival time, not the time you spend traveling.

(b) Oh, no! The midterm was held on Halloween, and the streets are infested
with zombies! The Sham-Poobanana Mass Transit District doesn’t have
the funding to add additional buses or install zombie-proof bus stops,
especially for only one night a year. Describe and analyze an algorithm
to determine a sequence of bus rides that minimizes the total time you
spend waiting at bus stops; you don’t care how late you get home or
how much time you spend on buses. (Assume you can wait inside the
See-Bull Center until your first bus is just about to leave.)

24. The first morning after returning from a glorious spring break, Alice wakes
to discover that her car won’t start, so she has to get to her classes at
Sham-Poobanana University by public transit. She has a complete transit
schedule for Poobanana County. The bus routes are represented in the
schedule by a directed graph G, whose vertices represent bus stops and
whose edges represent bus routes between those stops. For each edge u�v,
the schedule records three positive real numbers:

33

8. SHORTEST PATHS

• ℓ(u�v) is the length of the bus ride from stop u to stop v (in minutes)
• f (u�v) is the first time (in minutes past 12am) that a bus leaves stop u

for stop v.
• ∆(u�v) is the time between successive departures from stop u to stop v

(in minutes).

Thus, the first bus for this route leaves u at time f (u�v) and arrives at v at
time f (u�v)+ℓ(u�v), the second bus leaves u at time f (u�v)+∆(u�v) and
arrives at v at time f (u�v)+∆(u�v)+ℓ(u�v), the third bus leaves u at time
f (u�v)+2 ·∆(u�v) and arrives at v at time f (u�v)+2 ·∆(u�v)+ℓ(u�v),
and so on.

Alice wants to leaves from stop s (her home) at a certain time and arrive
at stop t (The See-Bull Center) as quickly as possible. If Alice arrives at a
stop on one bus at the exact time that another bus is scheduled to leave, she
can catch the second bus. Because she’s a student at SPU, Alice can ride the
bus for free, so she doesn’t care how many times she has to change buses.

Describe and analyze an algorithm to find the earliest time Alice can
reach her destination. Your input consists of the directed graph G = (V, E),
the vertices s and t, the values ℓ(e), f (e),∆(e) for each edge e ∈ E, and
Alice’s starting time (in minutes past 12am).

[Hint: In this rare instance, it may be easier to modify the algorithm,
instead of modifying the input graph.]

25. Mulder and Scully have computed, for every road in the United States,
the exact probability that someone driving on that road won’t be abducted
by aliens. Agent Mulder needs to drive from Langley, Virginia to Area 51,
Nevada. What route should he take so that he has the least chance of being
abducted?

More formally, you are given a directed graph G = (V, E), where every
edge e has an independent safety probability p(e). The safety of a path is
the product of the safety probabilities of its edges. Design and analyze an
algorithm to determine the safest path from a given start vertex s to a given
target vertex t. You may assume that all necessary arithmetic operations
can be performed in O(1) time.

For example, with the probabilities shown above, if Mulder tries to drive
directly from Langley to Area 51, he has a 50% chance of getting there
without being abducted. If he stops in Memphis, he has a 0.7× 0.9= 63%
chance of arriving safely. If he stops first in Memphis and then in Las Vegas,
he has a 1−0.7×0.1×0.5= 96.5% chance of being abducted! (That’s how
they got Elvis, you know.)

34

Exercises

0.2

0.7

0.50.9

0.1

0.5
Langley, VA

Area 51, AZ

Memphis, TN

Las Vegas, NV

♣26. On an overnight camping trip in Sunnydale National Park, you are woken
from a restless sleep by a scream. As you crawl out of your tent to investigate,
a terrified park ranger runs out of the woods, covered in blood and clutching
a crumpled piece of paper to his chest. As he reaches your tent, he gasps,
“Get out. . . while. . . you. . . ”, thrusts the paper into your hands, and falls to
the ground. Checking his pulse, you discover that the ranger is stone dead.

You look down at the paper and recognize a map of the park, drawn
as an undirected graph, where vertices represent landmarks in the park,
and edges represent trails between those landmarks. (Trails start and end
at landmarks and do not cross.) You recognize one of the vertices as your
current location; several vertices on the boundary of the map are labeled
EXIT.

On closer examination, you notice that someone (perhaps the poor dead
park ranger) has written a real number between 0 and 1 next to each vertex
and each edge. A scrawled note on the back of the map indicates that a
number next to an edge is the probability of encountering a vampire along
the corresponding trail, and a number next to a vertex is the probability of
encountering a vampire at the corresponding landmark. (Vampires can’t
stand each other’s company, so you’ll never see more than one vampire on
the same trail or at the same landmark.) The note warns you that stepping
off the marked trails will result in a slow and painful death.

You glance down at the corpse at your feet. Yes, his death certainly
looked painful. Wait, was that a twitch? Are his teeth getting longer? After
driving a tent stake through the undead ranger’s heart, you wisely decide to
immediately leave the park as fast as possible.

Describe and analyze an efficient algorithm to find a path from your
current location to an arbitrary EXIT node, such that the total expected
number of vampires encountered along the path is as small as possible. Be
sure to account for both the vertex probabilities and the edge probabilities.
[Hint: Even without the vertex probabilities, this is not the same as the
previous problem!]

35

	Shortest Paths
	Shortest Path Trees
	♥Negative Edges
	The Only SSSP Algorithm
	Unweighted Graphs: Breadth-First Search
	Directed Acyclic Graphs: Depth-First Search
	Best-First: Dijkstra’s Algorithm
	Relax ALL the Edges: Bellman-Ford
	Exercises

