
[T]he distributions and partitions of knowledge are not like several lines that meet
in one angle, and so touch but in a point, but are like branches of a tree that meet in
a stem, which hath a dimension and quantity of entireness and continuance before
it come to discontinue and break itself into arms and boughs.

— Francis Bacon, The Advancement of Learning (1605)

Thus you see, most noble Sir, how this type of solution bears little relationship to
mathematics, and I do not understand why you expect a mathematician to produce
it, rather than anyone else.

— Leonhard Euler, describing the Königsburg bridge problem
in a letter to Carl Leonhard Gottlieb Ehler (April 3, 1736)

Well, ya turn left by the fire station in the village and take the old post road by the
reservoir and. . .no, that won’t do.
Best to continue straight on by the tar road until you reach the schoolhouse and
then turn left on the road to Bennett’s Lake until. . . no, that won’t work either.
East Millinocket, ya say? Come to think of it, you can’t get there from here.

— Robert Bryan and Marshall Dodge,
Bert and I and Other Stories from Down East (1961)

5
Basic Graph Algorithms

5.1 Introduction and History

A graph is a collection of pairs—pairs of integers, pairs of people, pairs of
cities, pairs of stars, pairs of countries, pairs of scientific papers, pairs of web
pages, pairs of game positions, pairs of recursive subproblems, even pairs
of graphs. Mirroring the most common method for visualizing graphs, the
underlying objects being paired are usually called vertices or nodes, and the
pairs themselves are called edges or arcs, but in fact the objects and pairs can
be anything at all.

One of the earliest examples of graphs are road networks and maps thereof.
Roman engineers constructed a network of more than 400 000 km of public roads
across Europe, western and central Asia, and northern Africa during the height
of the Roman empire. Travelers on the road network would carry itineraria,
which were either simple lists or more pictorial representations of the landmarks
and distances along various roads. The Tabula Peutingeriana, a 13th-century

1

5. BASIC GRAPH ALGORITHMS

scroll depicting the entire Roman cursus publicus, is widely believed to be a
medieval copy of a 5th-century revision of a 1st-century itinerarium pictum,
commissioned during the reign of Augustus Caesar. The Peutinger Table is
not a geographically accurate map—historians debate whether it qualifies as a
“map” at all!—but an abstract representation of the road network, similar to
a modern subway map. Cities along each road are indicated by kinks in the
curve representing that road; the names of these cites and the lengths of road
segments between them are also indicated on the map. Thus, the map contains
enough information to find the shortest route between any two cities in the
5th-century Roman empire. See Figure 5.1.

Figure 5.1. A small excerpt of Konrad Miller’s 1872 restoration of the Tabula Peutingeriana, showing the
Roman road from modern-day Birten (Veteribus, top left) through Köln (Agripina) and Bonn (Bonnae) to
Mainz (Mogontiaco, top right), with branches to Trier (Avg Tresvirorvm, center) and Metz (Matricorvm,
bottom center). (See Image Credits at the end of the book.)

One of the oldest classical applications of graphs—and specifically trees—is
in representing genealogies. Complex family “trees” have been used for centuries
to settle legal questions about marriage, inheritance, and royal succession. Civil
law in the Roman empire, later adopted as canon law by the early Catholic
Church, forbade marriage between first cousins or closer relatives. In the early
ninth century, the Church changed both the required distance and the method
of computation. Where the Roman computatio legalis required the sum of
the distances to the nearest common ancestor to be at least four, the newer
computatio canonica required the maximum of the two distances to be at least
seven. In 1215, bowing to practical considerations (and actual practice), the
Church relaxed the minimum required distance for marriage to four.1 The
left diagram in Figure 5.2 illustrates a particularly convoluted case: Tirius and
Theburga marry and have a son Gaius, after which Tirius dies; Theburga then

1During the 11th and 12th centuries, this restriction gradually expanded to include up to
four links by affinity, initially through marriage, and later through extra-marital sex, betrothal,
and even godparenting. For example, marriage between a man and his sister’s husband’s sister’s
husband’s sister was formally forbidden, as was a marriage between a widower and his son’s
wife’s widowed mother. These affinity requirements were significantly reduced but not eliminated
in 1215; the Church only abandoned the concept of affinity ex copula illicita in 1917.

2

5.1. Introduction and History

marries Lothar, bears him a son, and dies; finally, Lothar and Bertha marry and
have a daughter Gemma. Can Gaius’s son legally marry Gemma’s daughter?

Figure 5.2. Two diagrams describing a complex marriage case, from an anonymous 15th-century
treatise on Johannes Andreae’s Super arboribus consanguinitatis et affinitatis, an early 14th-century
treatise on canon law. (See Image Credits at the end of the book.)

In the late 1600s, French mathematician Pierre Varignon developed a
graphical method for finding the equilibrium position of a tree-like network
of ropes under tension, building on earlier work by Simon Stevin published
a century earlier. Varignon observed that when the ropes are at equilibrium,
one can draw a graph whose edges are segments parallel to the ropes, with
lengths equal to the forces along those ropes, such that the ropes meeting at
any point in the network define a closed cycle in the graph. Varignon’s method
of “graphical statics” was not published in complete detail until 1725, two years
after his death. These graphs are now known as reciprocal force diagrams or
Maxwell-Cremona diagrams, after James Clerk Maxwell and Luigi Cremona, who
(along with Carl Culmann and others) developed a rich theory of reciprocal
diagrams in the late 1800s.

Figure 5.3. Reciprocal force diagrams (dotted), from Varignon’s posthumous Nouvelle mécanique, ou
statique, dont le projet fut donné en MDCLXXXVII [New mechanics, or statics, whose project was given
in 1687] (See Image Credits at the end of the book.)

3

https://www.flickr.com/photos/yalelawlibrary/14308584836/in/album-72157621954683764/

5. BASIC GRAPH ALGORITHMS

Of course, there are many other familiar examples of graphs, like board
games (dating to antiquity); vertices and edges of convex polyhedra (formally
studied by ancient Greek philosophers, but much older); visualizations of star
patterns (already developed in East Asia by the 7th century ce); knight’s tours
(described by al-Adli, Rudrat.a, al-Suli, and others in the 9th and 10th centuries),
mazes (introduced in their modern form by Giovanni Fontana circa 1420);
geodetic triangulations (introduced by Gemma Frisius in 1533, and used to
calculate the circumference of the earth by Willebrod Snell in 1615 and to define
the meter in 1799), Leonhard Euler’s well-known partial2 solution to the Bridges
of Königsburg puzzle (1735); telegraph and other communication networks
(first proposed in 1753, developed by Ronalds, Schilling, Gauss, Weber, and
others in the early 1800s, and deployed worldwide by the late 1800s); electrical
circuits (formalized in the early 1800s by Ohm, Maxwell, Kirchhoff, and others);
molecular structural formulas (introduced independently by August Kekulé
in 1857 and Archibald Couper in 1858); social networks (first studied in the
mid-1930s by sociologist Jacob Moreno); digital electronic circuits (proposed
by Charles Sanders Peirce in 1886, and cast into their modern form by Claude
Shannon in 1937); and yeah, okay, if you insist, the modern internet.

The word “graph” for the abstract mathematical was coined by James
Sylvester in 1878, who adapted Kekulé’s “chemicographs” to describe certain
algebraic invariants, at the suggestion of his colleague William Clifford. The
word “tree” was first used for connected acyclic graphs by Arthur Cayley in
1857, although the abstract concept of trees had already been used by Gustav
Kirchhoff and Karl von Staudt ten years earlier. The zeroth book on graph
theory was published by André Sainte-Laguë in 1926; Dénes Kőnig published
the first graph theory book ten years later.

5.2 Basic Definitions

Formally, a (simple) graph is a pair of sets (V, E), where V is an arbitrary
non-empty finite set, whose elements are called vertices3 or nodes, and E is a
set of pairs of elements of V , which we call edges. In an undirected graph, the
edges are unordered pairs, or just sets of size two; I usually write uv instead
of {u, v} to denote the undirected edge between u and v. In a directed graph,
the edges are ordered pairs of vertices; I usually write u�v instead of (u, v) to
denote the directed edge from u to v.

2Euler dismissed the final step of his argument—actually finding an Euler tour of a graph
when every vertex has even degree—as obvious. Euler also failed to notice that a graph with an
Euler tour must be connected. The first complete proof that a graph has an Euler tour if and only
if it is connected and every vertex has even degree was published by Carl Hierholzer in 1873.

3The singular of the English word “vertices” is vertex. Similarly, the singular of “matrices”
is matrix, and the singular of “indices” is index. Unless you’re speaking Italian, there is no

4

5.2. Basic Definitions

Following standard (but admittedly confusing) practice, I will also use V to
denote the number of vertices in a graph, and E to denote the number of edges.
Thus, in any undirected graph we have 0≤ E ≤

�V
2

�

, and in any directed graph
we have 0≤ E ≤ V (V − 1).

The endpoints of an edge uv or u�v are its vertices u and v. We distinguish
the endpoints of a directed edge u�v by calling u the tail and v the head.

The definition of a graph as a pair of sets forbids multiple undirected edges
with the same endpoints, or multiple directed edges with the same head and
the same tail. (The same directed graph can contain both a directed edge u�v
and its reversal v�u.) Similarly, the definition of an undirected edge as a set
of vertices forbids an undirected edge from a vertex to itself. Graphs without
loops and parallel edges are often called simple graphs; non-simple graphs
are sometimes called multigraphs. Despite the formal definitional gap, most
algorithms for simple graphs extend to multigraphs with little or no modification,
and for that reason, I see no need for a formal definition here.

For any edge uv in an undirected graph, we call u a neighbor of v and vice
versa, and we say that u and v are adjacent. The degree of a node is its number
of neighbors. In directed graphs, we distinguish two kinds of neighbors. For
any directed edge u�v, we call u a predecessor of v, and we call v a successor
of u. The in-degree of a vertex is its number of predecessors; the out-degree is
its number of successors.

A graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E.
A proper subgraph of G is any subgraph other than G itself.

A walk in an undirected graph G is a sequence of vertices, where each
adjacent pair of vertices are adjacent in G; informally, we can also think of a
walk as a sequence of edges. A walk is called a path if it visits each vertex
at most once. For any two vertices u and v in a graph G, we say that v is
reachable from u if G contains a walk (and therefore a path) between u and v.
An undirected graph is connected if every vertex is reachable from every other
vertex. Every undirected graph consists of one or more components, which are
its maximal connected subgraphs; two vertices are in the same component if
and only if there is a path between them.4

A walk is closed if it starts and ends at the same vertex; a cycle is a closed
walk that enters and leaves each vertex at most once. An undirected graph is
acyclic if no subgraph is a cycle; acyclic graphs are also called forests. A tree is a
connected acyclic graph, or equivalently, one component of a forest. A spanning

such thing as a vertice, matrice, indice, appendice, helice, apice, vortice, radice, simplice, codice,
directrice, dominatrice, Unice, Kleenice, Asterice, Obelice, Dogmatice, Getafice, Cacofonice,
Vitalstatistice, Geriatrice, or Jimi Hendrice! If you have trouble remembering this rule, stick to
“node”.

4Components are often called “connected components”, but this usage is redundant; compo-
nents are connected by definition.

5

5. BASIC GRAPH ALGORITHMS

tree of an undirected graph G is a subgraph that is a tree and contains every
vertex of G. A graph has a spanning tree if and only if it is connected. A
spanning forest of G is a collection of spanning trees, one for each component
of G.

Directed graphs require slightly different definitions. A directed walk is a
sequence of vertices v0�v1�v2� · · ·�vℓ such that vi−1�vi is a directed edge for
every index i; directed paths and directed cycles are defined similarly. Vertex v
is reachable from vertex u in a directed graph G if and only if G contains a
directed walk (and therefore a directed path) from u to v. A directed graph
is strongly connected if every vertex is reachable from every other vertex. A
directed graph is acyclic if it does not contain a directed cycle; directed acyclic
graphs are often called dags.

5.3 Representations and Examples

The most common way to visually represent graphs is by drawing them. A
drawing of a graph maps each vertex to a point in the plane (typically drawn as
a small circle or some other shape) and each edge to a curve or straight line
segment between the two vertices. A graph is planar if it has a drawing where
no two edges cross; such a drawing is also called an embedding.5 The same
graph can have many different drawings, so it is important not to confuse a
particular drawing with the graph itself. In particular, planar graphs can have
non-planar drawings!

a b c d

e f g

h i

j

m

l

k

a

b c

d

e

f

g

h

i

j

m

l
k

Figure 5.4. Two drawings of the same disconnected planar graph with 13 vertices, 19 edges, and two
components. Only the drawing on the left is an embedding.

However, drawings are far from the only useful representation of graphs.
For example, the intersection graph of a collection of geometric objects has a
node for every object and an edge for every intersecting pair of objects. Whether
a particular graph can be represented as an intersection graph depends on what
kind of object you want to use for the vertices. Different types of objects—line
segments, rectangles, circles, etc.—define different classes of graphs. One
particularly useful type of intersection graph is an interval graph, whose vertices

5Confusingly, the word “embedding” is often used as a synonym for “drawing”, even when
the edges intersect. Please don’t do that.

6

5.3. Representations and Examples

are intervals on the real line, with an edge between any two intervals that
overlap.

a
b

d
c

e

f

g

h i km

j l
a

bc
d

g

f

e

i h
jk

l m

(a) (b)

Figure 5.5. The graph in Figure 5.4 is also the intersection graph of (a) a set of line segments and (b) a
set of circles.

Another good example is the dependency graph of a recursive algorithm.
Dependency graphs are directed acyclic graphs. The vertices are all the distinct
recursive subproblems that arise when executing the algorithm on a particular
input. There is an edge from one subproblem to another if evaluating the second
subproblem requires a recursive evaluation of the first. For example, for the
Fibonacci recurrence

Fn =

0 if n= 0,
1 if n= 1,
Fn−1 + Fn−2 otherwise,

the vertices of the dependency graph are the integers 0, 1,2, . . . , n, and the
edges are the pairs (i − 1)�i and (i − 2)�i for every integer i between 2 and n.

8

7

6

5

4

3

2

1

0

9

Figure 5.6. The dependency graph of the Piṅgala-Fibonacci recurrence.

As a more complex example, recall the recurrence for the edit distance
problem from Chapter ??:

Edit(i, j) =

i if j = 0

j if i = 0

min

Edit(i − 1, j) + 1

Edit(i, j − 1) + 1

Edit(i − 1, j − 1) + [A[i] ̸= B[j]]

otherwise

The dependency graph of this recurrence is an m × n grid of vertices (i, j)
connected by vertical edges (i − 1, j)�(i, j), horizontal edges (i, j − 1)�(i, j),
and diagonal edges (i−1, j−1)�(i, j). Dynamic programming works efficiently
for any recurrence that has a reasonably small dependency graph; a proper
evaluation order ensures that each subproblem is visited after its predecessors.

7

5. BASIC GRAPH ALGORITHMS

Figure 5.7. The dependency graph of the edit distance recurrence.

Another interesting example is the configuration graph of a game, puzzle,
or mechanism like tic-tac-toe, checkers, the Rubik’s Cube, the Tower of Hanoi,
or a Turing machine. The vertices of the configuration graph are all the valid
configurations of the puzzle; there is an edge from one configuration to another
if it is possible to transform one configuration into the other with a single
simple “move”. (Obviously, the precise definition depends on what moves are
allowed.) Even for reasonably simple mechanisms, the configuration graph can
be extremely complex, and we typically only have access to local information
about the configuration graph.

Figure 5.8. The configuration graph of the 4-disk Tower of Hanoi.

Configuration graphs are close relatives of the game trees we considered
in Chapter ??, but with one crucial difference. Each state of a game appears
exactly once in its configuration graph, but can appear many times in its game
tree. In short, configuration graphs are memoized game trees!

Finite-state automata used in formal language theory can be modeled as
labeled directed graphs. Recall that a deterministic finite-state automaton is
formally defined as a 5-tuple M = (Σ,Q, s, A,δ), where Σ is a finite set called
the alphabet, Q is a finite set of states, s ∈Q is the start state, A⊆Q is the set of

8

5.4. Data Structures

accepting states, and δ : Q×Σ→Q is a transition function. But it is often more
useful to think of M as a directed graph GM whose vertices are the states Q,
and whose edges have the form q�δ(q, a) for every state q ∈ Q and symbol
a ∈ Σ. Basic questions about the language L(M) accepted by M can then be
phrased as questions about the graph GM . For example, L(M) =∅ if and only
if no accepting state/vertex is reachable from the start state/vertex s.

Finally, sometimes one graph can be used to implicitly represent other larger
graphs. A good example of this implicit representation is the subset construction,
which is normally used to convert NFAs into DFAs, but can be applied to arbitrary
directed graphs as follows. Given any directed graph G = (V, E), we can define
a new directed graph G′ = (2V , E′) whose vertices are all subsets of vertices in V ,
and whose edges E′ are defined as follows:

E′ :=
�

A�B
�

� u�v ∈ E for some u ∈ A and v ∈ B
	

We can mechanically translate this definition into an algorithm to construct G′

from G, but strictly speaking, this construction is unnecessary, because G is
already an implicit representation of G′.

It’s important not to confuse any of these examples/representations with the
actual formal definition: A graph is a pair of sets (V, E), where V is an arbitrary
non-empty finite set, and E is a set of pairs (either ordered or unordered) of
elements of V . In short: A graph is a set of pairs of things.

5.4 Data Structures

In practice, graphs are usually represented by one of two standard data struc-
tures: adjacency lists and adjacency matrices. At a high level, both data structures
are arrays indexed by vertices; this requires that each vertex has a unique integer
identifier between 1 and V . In a formal sense, these integers are the vertices.

Adjacency Lists

By far the most common data structure for storing graphs is the adjacency list.
An adjacency list is an array of lists, each containing the neighbors of one of the
vertices (or the out-neighbors if the graph is directed).6 For undirected graphs,
each edge uv is stored twice, once in u’s neighbor list and once in v’s neighbor
list; for directed graphs, each edge u�v is stored only once, in the neighbor
list of the tail u. For both types of graphs, the overall space required for an
adjacency list is O(V + E).

6Attentive students might notice that despite is name, an adjacency list is not a list. This
nomenclature is an example of the Red Herring Principle: In computer science, as in mathematics,
a red herring is neither necessarily red nor necessarily a fish.

9

5. BASIC GRAPH ALGORITHMS

There are several different ways to represent these neighbor lists, but the
standard implementation uses a simple singly-linked list. The resulting data
structure allows us to list the (out-)neighbors of a node v in O(1+deg(v)) time;
just scan v’s neighbor list. Similarly, we can determine whether u�v is an edge
in O(1+deg(u)) time by scanning the neighbor list of u. For undirected graphs,
we can improve the time to O(1 + min{deg(u), deg(v)}) by simultaneously
scanning the neighbor lists of both u and v, stopping either when we locate the
edge or when we fall of the end of a list.

a b c d e f g h i

b

e

a

e

b

f

c

g

a

b

e

b

i

e

e g

f

c

g

d

f

g

j k l m

h

c

g

f

c

d

l

m

k

j

l

m

j

l

j

k

a b c d

e f g

h i

j

m

l

k

Figure 5.9. An adjacency list for our example graph.

Of course, linked lists are not the only data structure we could use; any
other structure that supports searching, listing, insertion, and deletion will do.
For example, we can reduce the time to determine whether uv is an edge to
O(1+ log(deg(u))) by using a balanced binary search tree to store the neighbors
of u, or even to O(1) time by using an appropriately constructed hash table.7

One common implementation of adjacency lists is the adjacency array,
which uses a single array to store all edge records, with the records of edges
incident to each vertex in a contiguous interval, and with a separate array
storing the index of the first edge incident to each vertex. Moreover, it is useful
to keep the intervals for each vertex in sorted order, as shown in Figure 5.10,
so that we can check in O(log deg(u)) time whether two vertices u and v are
adjacent.

Adjacency Matrices

The other standard data structure for graphs is the adjacency matrix,8 first
proposed by Georges Brunel in 1894. The adjacency matrix of a graph G is a
V × V matrix of 0s and 1s, normally represented by a two-dimensional array
A[1 .. V, 1 .. V], where each entry indicates whether a particular edge is present
in G. Specifically, for all vertices u and v:
• if the graph is undirected, then A[u, v] := 1 if and only if uv ∈ E, and

7This is a lot more subtle than it sounds. Most popular hashing techniques do not guarantee
fast query times, and even most good hashing methods can guarantee only O(1) expected time.
See http://algorithms.wtf for a more thorough discussion of hashing.

8See footnote 3.

10

http://algorithms.wtf

5.4. Data Structures

a b c d e f g h i j k l m

b e a c e f b d f g c g a b f g h b c e g c d e f i e g k l m j l j k m j l

1 3 7 11 13 18 22 27 28 29 32 34 37
2 5 1 3 5 6 2 4 6 7 3 7 1 2 6 7 8 2 3 5 7 3 4 5 6 9 5 7 11 12 13 10 12 10 11 13 10 12

a b c d e f g h i j k l m

Figure 5.10. An abstract adjacency array for our example graph, and its actual implementation as a
pair of integer arrays.

• if the graph is directed, then A[u, v] := 1 if and only if u�v ∈ E.
For undirected graphs, the adjacency matrix is always symmetric, meaning
A[u, v] = A[v, u] for all vertices u and v, because uv and vu are just different
names for the same edge, and the diagonal entries A[u, u] are all zeros. For
directed graphs, the adjacency matrix may or may not be symmetric, and the
diagonal entries may or may not be zero.

a b c d e f g h i j k l m
a 0 1 0 0 1 0 0 0 0 0 0 0 0
b 1 0 1 0 1 1 0 0 0 0 0 0 0
c 0 1 0 1 0 1 1 0 0 0 0 0 0
d 0 0 1 0 0 0 1 0 0 0 0 0 0
e 1 1 0 0 0 1 1 1 0 0 0 0 0
f 0 1 1 0 1 0 1 0 0 0 0 0 0
g 0 0 1 1 1 1 0 0 1 0 0 0 0
h 0 0 0 0 1 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 1 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 0 1 1 1
k 0 0 0 0 0 0 0 0 0 1 0 1 0
l 0 0 0 0 0 0 0 0 0 1 1 0 1
m 0 0 0 0 0 0 0 0 0 1 0 1 0

a b c d

e f g

h i

j

m

l

k

Figure 5.11. An adjacency matrix for our example graph.

Given an adjacency matrix, we can decide in Θ(1) time whether two vertices
are connected by an edge just by looking in the appropriate slot in the matrix.
We can also list all the neighbors of a vertex in Θ(V) time by scanning the
corresponding row (or column). This running time is optimal in the worst case,
but even if a vertex has few neighbors, we still have to scan the entire row to
find them all. Similarly, adjacency matrices require Θ(V 2) space, regardless of
how many edges the graph actually has, so they are only space-efficient for very
dense graphs.

11

5. BASIC GRAPH ALGORITHMS

Comparison

Table 5.1 summarizes the performance of the various standard graph data
structures. Stars∗ indicate expected amortized time bounds for maintaining
dynamic hash tables.9

Standard adjacency list Fast adjacency list Adjacency
(linked lists) (hash tables) matrix

Space Θ(V + E) Θ(V + E) Θ(V 2)
Test if uv ∈ E O(1+min{deg(u), deg(v)}) = O(V) O(1) O(1)

Test if u�v ∈ E O(1+ deg(u)) = O(V) O(1) O(1)
List v’s (out-)neighbors Θ(1+ deg(v)) = O(V) Θ(1+ deg(v)) = O(V) Θ(V)

List all edges Θ(V + E) Θ(V + E) Θ(V 2)
Insert edge uv O(1) O(1)∗ O(1)
Delete edge uv O(deg(u) + deg(v)) = O(V) O(1)∗ O(1)

Table 5.1. Times for basic operations on standard graph data structures.

In light of this comparison, one might reasonably wonder why anyone would
ever use an adjacency matrix; after all, adjacency lists with hash tables support
the same operations in the same time, using less space. The main reason is that
for sufficiently dense graphs, adjacency matrices are simpler and more efficient
in practice, because they avoid the overhead of chasing pointers and computing
hash functions; they’re just contiguous blocks of memory.

Similarly, why would anyone use linked lists in an adjacency list structure to
store neighbors, instead of balanced binary search trees or hash tables? Although
the primary reason in practice is almost surely tradition—If they were good
enough for Donald Knuth’s code, they should be good enough for yours!—there
are more principled arguments. One is that standard adjacency lists are in fact
good enough for most applications. Most standard graph algorithms never (or
rarely) actually ask whether an arbitrary edge is present or absent, or attempt
to insert or delete edges, and so optimizing the data structures to support those
operations is unnecessary.

But in my opinion, the most compelling reason for both standard data
structures is that many graphs are implicitly represented by adjacency matrices
and standard adjacency lists. For example:
• Intersection graphs are usually represented as a list of the underlying

geometric objects. As long as we can test whether two objects intersect in
constant time, we can apply any graph algorithm to an intersection graph by
pretending that the input graph is stored explicitly as an adjacency matrix.

• Any data structure composed from records with pointers between them can
be seen as a directed graph. Graph algorithms can be applied to these data
structures by pretending that the graph is stored in a standard adjacency list.
9Don’t worry if you don’t understand the phrase “expected amortized”.

12

5.5. Whatever-First Search

• Similarly, we can apply any graph algorithm to a configuration graph as
though it were represented as a standard adjacency list, provided we can
enumerate all possible moves from a given configuration in constant time
each.

For the last two examples, we can enumerate the edges leaving any vertex in
time proportional to its degree, but we cannot necessarily determine in constant
time if two vertices are adjacent. (Is there a pointer from this record to that
record? Can we get from this configuration to that configuration in one move?)
Moreover, we usually don’t have the luxury of reorganizing the pointers in each
record or the moves out of a given configuration into a more efficient data
structure. Thus, a standard adjacency list, with neighbors stored in linked lists,
is the appropriate model data structure.

In the rest of this book, unless explicitly stated otherwise, all time bounds
for graph algorithms assume that the input graph is represented by a
standard adjacency list. Similarly, unless explicitly stated otherwise, when an
exercise asks you to design and analyze a graph algorithm, you should assume
that the input graph is represented in a standard adjacency list.

5.5 Whatever-First Search

So far we have only discussed local operations on graphs; arguably the most
fundamental global question we can ask about graphs is reachability. Given a
graph G and a vertex s in G, the reachability question asks which vertices are
reachable from s; that is, for which vertices v is there a path from s to v? For
now, let’s consider only undirected graphs; I’ll consider directed graphs briefly
at the end of this section. For undirected graphs, the vertices reachable from s
are precisely the vertices in the same component as s.

Perhaps the most natural reachability algorithm—at least for people like us
who are used to thinking recursively—is depth-first search. This algorithm can
be written either recursively or iteratively. It’s exactly the same algorithm either
way; the only difference is that we can actually see the “recursion” stack in the
non-recursive version.

RecursiveDFS(v):
if v is unmarked

mark v
for each edge vw

RecursiveDFS(w)

IterativeDFS(s):
Push(s)
while the stack is not empty

v← Pop
if v is unmarked

mark v
for each edge vw

Push(w)

13

5. BASIC GRAPH ALGORITHMS

Depth-first search is just one (perhaps the most common) species of a
general family of graph traversal algorithms that I call whatever-first search.
The generic traversal algorithm stores a set of candidate edges in some data
structure that I’ll call a “bag”. The only important properties of a “bag” are that
we can put stuff into it and then later take stuff back out. A stack is a particular
type of bag, but certainly not the only one. Here is the generic algorithm:

WhateverFirstSearch(s):
put s into the bag
while the bag is not empty

take v from the bag
if v is unmarked

mark v
for each edge vw

put w into the bag

I claim that WhateverFirstSearch marks every node reachable from s
and nothing else. The algorithm clearly marks each vertex in G at most once. To
show that it visits every node in a connected graph at least once, we modify the
algorithm slightly; the modifications are in bold red. Instead of keeping vertices
in the bag, the modified algorithm stores pairs of vertices. This modification
allows us to remember, whenever we visit a vertex v for the first time, which
previously-visited neighbor vertex put v into the bag. We call this earlier vertex
the parent of v.

WhateverFirstSearch(s):
put (∅, s) in bag
while the bag is not empty

take (p, v) from the bag (⋆)
if v is unmarked

mark v
parent(v)← p
for each edge vw (†)

put (v, w) into the bag (⋆⋆)

Lemma 5.1. WhateverFirstSearch(s) marks every vertex reachable from s
and only those vertices. Moreover, the set of all pairs (v,parent(v)) with
parent(v) ̸=∅ defines a spanning tree of the component containing s.

Proof: First we argue that the algorithm marks every vertex v that is reachable
from s, by induction on the shortest-path distance from s to v. The algorithm
marks s. Let v be any other vertex reachable from s, and let s� · · ·�u�v be
any path from s to v with the minimum number of edges. (There must be such
a path, because v is reachable from s.) The prefix path s� · · ·�u is shorter
than the shortest path from s to u, so the inductive hypothesis implies that the

14

5.6. Important Variants

algorithm marks u. When the algorithm marks u, it must immediately put the
pair (u, v) into the bag, so it must later take (u, v) out of the bag, at which point
the algorithm immediately marks v, unless it was already marked.

Every pair (v,parent(v)) with parent(v) ̸= ∅ is actually an edge in the
underlying graph G. We claim that for any marked vertex v, the path of parent
edges v�parent(v)�parent(parent(v))� · · · eventually leads back to s; we prove
this claim by induction on the order in which vertices are marked. Trivially s is
reachable from s, so let v be any other marked vertex. The parent of v must be
marked before v is marked, so the inductive hypothesis implies that the parent
path parent(v)�parent(parent(v))� · · · leads to s; adding one more parent edge
s�parent(s) establishes the claim.

The previous claim implies that every vertex marked by the algorithm is
reachable from s, and that the set of all parent edges forms a connected graph.
Because every marked node except s has a unique parent, the number of parent
edges is exactly one less than the number of marked vertices. We conclude that
the parent edges form a tree. □

Analysis

The running time of the traversal algorithm depends on what data structure we
use for the “bag”, but we can make a few general observations. Let T is the time
required to insert a single item into the bag or delete a single item from the bag.
The for loop (†) is executed exactly once for each marked vertex, and therefore
at most V times. Each edge uv in the component of s is put into the bag exactly
twice; once as the pair (u, v) and once as the pair (v, u), so line (⋆⋆) is executed
at most 2E times. Finally, we can’t take more things out of the bag than we put
in, so line (⋆) is executed at most 2E + 1 times. Thus, assuming the underlying
graph G is stored in a standard adjacency list, WhateverFirstSearch runs in
O(V + ET) time. (If G is stored in an adjacency matrix, the running time of
WhateverFirstSearch increases to O(V 2 + ET).)

5.6 Important Variants

Stack: Depth-First

If we implement the “bag” using a stack, we recover our original depth-first
search algorithm. Stacks support insertions (push) and deletions (pop) in O(1)
time each, so the algorithm runs in O(V + E) time. The spanning tree formed
by the parent edges is called a depth-first spanning tree. The exact shape
of the tree depends on the start vertex and on the order that neighbors are
visited inside the for loop (†), but in general, depth-first spanning trees are long

15

5. BASIC GRAPH ALGORITHMS

and skinny. We will consider several important properties and applications of
depth-first search in Chapter ??.

Queue: Breadth-First

If we implement the “bag” using a queue, we get a different graph-traversal
algorithm called breadth-first search. Queues support insertions (push) and
deletions (pull) in O(1) time each, so the algorithm runs in O(V + E) time. In
this case, the breadth-first spanning tree formed by the parent edges contains
shortest paths from the start vertex s to every other vertex in its component; we
will consider shortest paths in detail in Chapter ??. Again, the exact shape of a
breadth-first spanning tree depends on the start vertex and on the order that
neighbors are visited in the for loop (†), but in general, breadth-first spanning
trees are short and bushy.

Figure 5.12. A depth-first spanning tree and a breadth-first spanning tree of the same graph, both
starting at the center vertex.

Priority Queue: Best-First

Finally, if we implement the “bag” using a priority queue, we get yet another
family of algorithms called best-first search. Because the priority queue stores
at most one copy of each edge, inserting an edge or extracting the minimum-
priority edge requires O(log E) time, which implies that best-first search runs in
O(V + E log E) time.

I describe best-first search as a “family of algorithms”, rather than a single
algorithm, because there are different methods to assign priorities to the edges,
and these choices lead to different algorithmic behavior. I’ll describe three
well-known variants below, but there are many others. In all three examples,
we assume that every edge uv or u�v in the input graph has a non-negative
weight w(uv) or w(u�v).

First, if the input graph is undirected and we use the weight of each edge
as its priority, best-first search constructs the minimum spanning tree of the
component of s. Surprisingly, as long as all the edge weights are distinct, the
resulting tree does not depend on the start vertex or the order that neighbors

16

5.6. Important Variants

are visited; in this case, the minimum spanning tree is actually unique. This
instantiation of best-first search is commonly (but, as usual, incorrectly) known
as Prim’s algorithm; we’ll discuss this and other minimum-spanning-trees in
more detail in Chapter ??.

Define the length of a path to be the sum of the weights of its edges. We
can also compute shortest paths in weighted graphs using best-first search,
as follows. Every marked vertex v stores a distance dist(v). Initially we set
dist(s) = 0. For every other vertex v, when we set parent(v)← p, we also set
dist(v)← dist(p)+w(p�v), and when we insert the edge v�w into the priority
queue, we use the priority dist(v) + w(v�w). Assuming all edge weights are
positive, dist(v) is the length of the shortest path from s to v. This instantiation
of best-first search is commonly (but, as usual, strictly speaking, incorrectly)
known as Dijkstra’s algorithm; we’ll see this algorithm again in Chapter ??.

Finally, define the width of a path to be the minimum weight of any edge
in the path. A simple modification of “Dijkstra’s” best-first search algorithm
computes widest paths from s to every other reachable vertex; widest paths
are also called bottleneck shortest paths. Every marked vertex v stores a
value width(v). Initially we set width(s) =∞. For every other vertex v, when
we set parent(v) ← p, we also set width(v) ← min{width(p), w(p�v)}, and
when we insert the edge v�w into the priority queue, we use the priority
min{width(v), w(v�w)}. Widest paths are useful in algorithms for computing
maximum flows, which (you guessed it) we’ll consider in Chapter ??.

Disconnected Graphs

WhateverFirstSearch(s) only visits the vertices reachable from a single start
vertex s. To visit every vertex in G, we can use the following simple “wrapper”
function.

WFSAll(G):
for all vertices v

unmark v
for all vertices v

if v is unmarked
WhateverFirstSearch(v)

Wait, I hear you ask, why are you making this so complicated? Why not just10
scan the vertex array?

MarkEveryVertexDuh(G):
for all vertices v

mark v

10This word is almost always a signal that you are missing something important.

17

5. BASIC GRAPH ALGORITHMS

Well, sure, if you have an complete list of vertices, then you can do that, but
remember that not all graphs are represented so explicitly.11 More importantly,
even if we do have an explicit vertex list, the order in which this naive algorithm
visits vertices is determined by their order in the data structure, not by the
abstract structure of the graph.

In particular, unlike a naive scan through the vertices, WFSAll visits all
the vertices in one component, and then all the vertices in the next component,
and so on through each component of the input graph. This component-by-
component traversal allows us, for example, to count the components of a
disconnected graph using a single counter.

CountComponents(G):
count← 0
for all vertices v

unmark v
for all vertices v

if v is unmarked
count← count+ 1
WhateverFirstSearch(v)

return count

With just a bit more work, we can record which component contains each vertex,
instead of merely marking it.

CountAndLabel(G):
count← 0
for all vertices v

unmark v
for all vertices v

if v is unmarked
count← count+ 1
LabelOne(v, count)

return count

〈〈Label one component〉〉
LabelOne(v, count):

while the bag is not empty
take v from the bag
if v is unmarked

mark v
comp(v)← count
for each edge vw

put w into the bag

WFSAll marks every vertex once, puts every edge into the bag once, and
takes every edge out of the bag once, so the overall running time is O(V + ET),
where T is the time for a bag operation. In particular, if we run depth-first search
or breadth-first search at every vertex, the resulting algorithm still requires only
O(V + E) time.

Moreover, because WhateverFirstSearch computes a spanning tree of
one component, we can use WFSAll to compute a spanning forest of the entire

11On the other hand, if we store a time-stamp at every vertex indicating the last time it was
“marked”, then we can “unmark every vertex” in O(1) time by recording the start time of our
traversal, and considering a vertex “marked” if its time stamp is later than the recorded start
time.

18

5.7. Graph Reductions: Flood Fill

graph. In particular, best-first search with edge weights as priorities computes
the minimum-weight spanning forest in O(V + E log E).

Shockingly, at least one extremely popular algorithms textbook claims that
this wrapper can only be used with depth-first search.12 This claim is flatly
incorrect. In fact, the very first implementation of breadth-first search, written
around 1945 by Konrad Zuse in his proto-language Plankalkül, was developed for
the specific purpose of counting and labeling the components of an undirected
graph.

Directed Graphs

Whatever-first search is easy to adapt to directed graphs; the only difference is
that when we mark a vertex, we put all of its out-neighbors into the bag. In fact,
if we are using standard adjacency lists or adjacency matrices, we do not have
to change the code at all!

WhateverFirstSearch(s):
put s into the bag
while the bag is not empty

take v from the bag
if v is unmarked

mark v
for each edge v�w

put w into the bag

Our earlier proof implies that the algorithm marks every vertex reachable
from s, and the directed edges parent(v)�p define a rooted tree, with all edges
directed away from the root s. However, even if the graph is connected, we no
longer necessarily obtain a spanning tree of the graph, because reachability is
no longer symmetric.

On the gripping hand, WhateverFirstSearch does define a spanning tree
of the vertices reachable from s. Moreover, by varying the instantiation of the
“bag”, we can obtain a depth-first spanning tree, a breadth-first spanning tree, a
minimum-weight directed spanning tree, a shortest-path tree, or a widest-path
tree of those reachable vertices.

5.7 Graph Reductions: Flood Fill

One of the earliest modern examples of whatever-first search was proposed
by Edward Moore in the mid-1950s. A pixel map is a two-dimensional array

12To quote directly: “Unlike breadth-first search, whose predecessor subgraph forms a tree,
the predecessor subgraph produced by a depth-first search may be composed of several trees,
because the search may repeat from multiple sources.”

19

5. BASIC GRAPH ALGORITHMS

whose value represent colors; the individual entries in the array are called pixels,
an abbreviation of picture elements.13 A connected region in a pixel map is a
connected subset of pixels that all have the same color, where two pixels are
considered adjacent if they are immediate horizontal or vertical neighbors. The
flood fill operation, commonly represented by a paint can in raster-graphics
editing software, changes every pixel in a connected region to a new color; the
input to the operation consists of the indices i and j of one pixel in the target
region and the new color.

Figure 5.13. An example of flood fill

The flood-fill problem can be reduced to the reachability problem by chasing
the definitions. We define an undirected graph G = (V, E), whose vertices are
the individual pixels, and whose edges connect neighboring pixels with the
same color. Each connected region in the pixel map is a component of G; thus,
the flood-fill problem reduces to a reachability problem in G. We can solve this
reachability problem using whatever-first search in G, starting at the given pixel
(i, j), with one minor modification; whenever we mark a vertex, we immediately
change its color. For an n× n pixel map, the graph G has n2 vertices and at
most 2n2 edges, so whatever-first search runs in O(V + E) = O(n2) time.

This simple example demonstrates the essential ingredients of a reduction.
Rather than solving the flood-fill problem from scratch, we use an existing
algorithm as a black-box subroutine. How whatever-first search works is utterly
irrelevant here; all that matters is its specification: Given a graph G and a
starting vertex s, mark every vertex in G that is reachable from s. Like any other
subroutine, we still have to describe how to construct the input and how to
use its output. We also have to analyze our resulting algorithm in terms of our
input parameters, not the vertices and edges of whatever intermediate graph
our algorithm constructs.

Now that we have an algorithm that works—but only now—we can apply
two easy optimizations to make it faster, one practical and the other theoretical:

13Before the advent of modern raster display devices in the 1960s, pixels were more commonly
known as stitches or tesserae, depending on whether they were made of thread or very small
rocks. The word pix became a standard abbreviation for picture(s) in the early 20th century—not
long after sox became a common plural of sock—supplanting the earlier colloquialism piccy. See
also voxel (volume element), texel (texture element), and taxel (tactile element and/or badger).

20

Exercises

• In an actual implementation, we would not actually build a separate graph
data structure for G. Instead, we can use the pixel map directly as though it
were a standard adjacency list, because we can list the same-color neighbors
of any pixel in O(1) time each. In particular, there is no need to separately
“mark” vertices; we can use the color of the pixels instead.

• More careful analysis implies that the running time is proportional to
the number of pixels in the region being filled—equivalently, the number
of vertices in component of G containing vertex (i, j)—which could be
considerably smaller than O(n2).

Exercises

Graphs

1. Prove that the following definitions are all equivalent.
• A tree is a connected acyclic graph.
• A tree is one component of a forest. (A forest is an acyclic graph.)
• A tree is a connected graph with at most V − 1 edges.
• A tree is a minimally connected graph; removing any edge disconnects

the graph.
• A tree is an acyclic graph with at least V − 1 edges.
• A tree is a maximally acyclic graph; adding an edge between any two

vertices creates a cycle.
• A tree is a graph that contains a unique path between each pair of

vertices.

2. Prove that any connected acyclic graph with n ≥ 2 vertices has at least
two vertices with degree 1. Do not use the words “tree” or “leaf”, or any
well-known properties of trees; your proof should follow entirely from the
definitions of “connected” and “acyclic”.

3. A graph (V, E) is bipartite if the vertices V can be partitioned into two
subsets L and R, such that every edge has one vertex in L and the other in R.
(a) Prove that every tree is a bipartite graph.
(b) Prove that a graph G is bipartite if and only if every cycle in G has an

even number of edges.
(c) Describe and analyze an efficient algorithm that determines whether a

given undirected graph is bipartite.

21

5. BASIC GRAPH ALGORITHMS

4. Whenever groups of pigeons gather, they instinctively establish a pecking
order. For any pair of pigeons, one pigeon always pecks the other, driving
it away from food or potential mates. The same pair of pigeons always
chooses the same pecking order, even after years of separation, no matter
what other pigeons are around. Surprisingly, the overall pecking order can
contain cycles—for example, pigeon i pecks pigeon j, which pecks pigeon k,
which pecks pigeon ℓ, which pecks pigeon i.

(a) Prove that any finite population of pigeons can be placed in a procession
(perhaps a parade?) so that each pigeon pecks the preceding pigeon’s
posterior. Pretty please.

(b) Suppose you are given a directed graph representing the pecking re-
lationships among a set of n pigeons. The graph contains one vertex
per pigeon, and it contains an edge i� j if and only if pigeon i pecks
pigeon j. Describe and analyze an algorithm to compute a pecking order
for the pigeons, as guaranteed by part (a).

(c) Prove that for any set of at least three pigeons, either the pecking order
described in part (a) is unique, or there are three pigeons i, j, and k,
such that pigeon i pecks pigeon j, which pecks pigeon k, which pecks
pigeon i.

5. An Euler tour of a graph G is a closed walk through G that traverses every
edge of G exactly once.
(a) Prove that if a connected graph G has an Euler tour, then every vertex

in G has even degree. (Euler proved this.)
(b) Prove that if every vertex in a connected graph G has even degree, then G

has an Euler tour. (Euler did not prove this.)
(c) Describe and analyze an algorithm to compute an Euler tour in a given

graph, or correctly report that no such tour exists. (Euler vaguely waved
his hands at this.)

6. The d-dimensional hypercube is the graph defined as follows. There are
2d vertices, each labeled with a different string of d bits. Two vertices are
joined by an edge if their labels differ in exactly one bit.

(a) A Hamiltonian cycle in a graph G is a cycle of edges in G that enters each
vertex of G exactly once. Prove that for all d ≥ 2, the d-dimensional
hypercube has a Hamiltonian cycle.

(b) Which hypercubes have an Euler tour (a closed walk that traverses every
edge exactly once)? [Hint: This is very easy.]

22

Exercises

Traversal Algorithms

7. Recall that a directed graph G is strongly connected if, for any two vertices u
and v, there is a path in G from u to v and a path in G from v to u.

Describe an algorithm to determine, given an undirected graph G as
input, whether it is possible to direct each edge of G so that the resulting
directed graph is strongly connected.

8. Let G be a connected graph, and let T be a depth-first spanning tree of G
rooted at some node v. Prove that if T is also a breadth-first spanning tree
of G rooted at v, then G = T .

9. Professors Epprich and Goodstein propose the following optimization of the
generic whatever-first search algorithm. Instead of checking whether the
vertices we take out of the bag are marked, their algorithm checks before it
even puts the vertex into the bag, thereby ensuring that each vertex is put
into the bag at most once. Their algorithm also assigns the parent of each
vertex when that vertex is marked.

EagerWFS(s):
mark s
put s into the bag
while the bag is not empty

take v from the bag
for each edge vw

if w is unmarked
mark w
parent(w)← v
put w into the bag

(a) Prove that EagerWFS(s)marks every node reachable from s and nothing
else. Equivalently, prove that the parent edges v�parent(v) computed
by EagerWFS(s) define a spanning tree of the component containing s.

(b) Prove that if the bag is implemented as a queue, EagerWFS is equivalent
to breadth-first search, meaning the two algorithms mark the same
vertices in the same order and construct the same spanning tree. [Hint:
What is the definition of a queue?]

(c) Prove that EagerWFS is never equivalent to depth-first search, no matter
what data structure is used as the bag (and thus, in particular, when the
bag is a stack).

Neither EagerWFS nor RecursiveDFS specify the order that edges
vw at each vertex v are considered, and different edge orders may lead
to different spanning trees. Thus, you need to argue, for some explicit
graph G, that no spanning tree of G produced by RecursiveDFS can be
constructed by EagerWFS (using any bag data structure), or vice versa.

23

5. BASIC GRAPH ALGORITHMS

10. One of the earliest published descriptions of whatever-first search as a generic
class of algorithms was by Edsger Dijkstra, Leslie Lamport, Alain Martin,
Carel Scholten, and Elisabeth Steffens in 1975, as part of the design of an
automatic garbage collector. Instead of maintaining marked and unmarked
vertices, their algorithm maintains a color for each vertex, which is either
white, gray, or black. As usual, in the following algorithm, we imagine a
fixed underlying graph G.

ThreeColorSearch(s):
color all nodes white
color s gray
while at least one vertex is gray

ThreeColorStep()

ThreeColorStep():
v← any gray vertex
if v has no white neighbors

color v black
else

w← any white neighbor of v
parent(w)← v
color w gray

(a) Prove that ThreeColorSearch maintains the following invariant at
all times: No black vertex is a neighbor of a white vertex. [Hint: This
should be easy.]

(b) Prove that after ThreeColorSearch(s) terminates, all vertices reach-
able from s are black, all vertices not reachable from s are white, and
that the parent edges v�parent(v) define a rooted spanning tree of the
component containing s.

[Hint: Intuitively, black nodes are “marked” and gray nodes are “in
the bag”. Unlike our formulation of WhateverFirstSearch, however,
the three-color algorithm is not required to process all edges out of a
node at the same time.]

(c) Prove that the following variant of ThreeColorSearch, which main-
tains the set of gray vertices in a standard stack, is equivalent to
depth-first search. [Hint: The order of the last two lines of Three-
ColorStackStep matters!]

ThreeColorStackSearch(s):
color all nodes white
color s gray
push s onto the stack
while at least one vertex is gray

ThreeColorStackStep()

ThreeColorStackStep():
pop v from the stack
if v has no white neighbors

color v black
else

w← any white neighbor of v
parent(w)← v
color w gray
push v onto the stack
push w onto the stack

(d) Prove that the following variant of ThreeColorSearch, which main-
tains the set of gray vertices in a standard queue, is not equivalent

24

Exercises

to breadth-first search. [Hint: The order of the last two lines of
ThreeColorQueueStep doesn’t matter!]

ThreeColorQueueSearch(s):
color all nodes white
color s gray
push s into the queue
while at least one vertex is gray

ThreeColorQueueStep()

ThreeColorQueueStep():
pull v from the queue
if v has no white neighbors

color v black
else

w← any white neighbor of v
parent(w)← v
color w gray
push v into the queue
push w into the queue

♥(e) Now suppose that another process is adding edges to G while Three-
ColorSearch is running. These new edges could violate the color
invariant described in part (a) and therefore destroy the correctness
of the algorithm—in particular, when ThreeColorSearch terminates,
some vertices reachable from s could be white. This would be disastrous
if we are relying on “white” to mean “unreachable and therefore safe to
delete”.

However, if the other process explicitly preserves the color invariant,
we can still use the three-color algorithm to safely identify unreachable
vertices. We model the two concurrent algorithms as follows; the
either/or choice in GarbageCollect and the choice of which vertices u
and w to Mutate are entirely out of the main algorithm’s control.14

GarbageCollect(s):
color all vertices white
color s gray
while at least one vertex is gray

either
CollectStep()

or
Mutate()

CollectStep():
v← any gray vertex
if v has no white neighbors

color v black
else

w← any white neighbor of v
color w gray

14This is a dramatic oversimplification of the “mark and sweep” garbage-collection algorithms
actually used in multi-threaded languages like Lua and Go. A more thorough discussion of
multi-threaded dynamic memory management is unfortunately beyond the scope of this book,
except for the First Commandment: Thou Shalt Not Roll Thine Own Garbage Collector.

25

5. BASIC GRAPH ALGORITHMS

Mutate():
u← any vertex
w← any vertex
if uw is not an edge

add edge uw
if u is black and w is white

color u gray
if u is white and w is black

color w gray
Prove that GarbageCollect eventually terminates with every vertex
reachable from s colored black and every vertex not reachable from s
colored white.

♥(f) Suppose instead of recoloring black vertices gray, Mutate maintains the
color invariant by coloring some white vertices gray:

Mutate():
u← any vertex
w← any vertex
if uw is not an edge

add edge uw
if u is black and w is white

color w gray
if u is white and w is black

color u gray
Prove that GarbageCollect eventually terminates with s colored black,
every vertex reachable from a black vertex colored black, and every
vertex not reachable from a black vertex colored white.

Reductions

11. A number maze is an n× n grid of positive integers. A token starts in the
upper left corner; your goal is to move the token to the lower-right corner.
On each turn, you are allowed to move the token up, down, left, or right;
the distance you may move the token is determined by the number on its
current square. For example, if the token is on a square labeled 3, then you
may move the token three steps up, three steps down, three steps left, or
three steps right. However, you are never allowed to move the token off the
edge of the board.

Describe and analyze an efficient algorithm that either returns the
minimum number of moves required to solve a given number maze, or
correctly reports that the maze has no solution. For example, given the
number maze in Figure 5.14, your algorithm should return the integer 8.

12. Snakes and Ladders is a classic board game, originating in India no later
than the 16th century. The board consists of an n × n grid of squares,

26

Exercises

3 5

5 3

7 4

1 5

2 8

4 5

3 1

7 2

6

3

4

3

3 1 3 2

3 5

5 3

7 4

1 5

2 8

4 5

3 1

7 2

6

3

4

3

3 1 3 2

Figure 5.14. A 5× 5 number maze that can be solved in eight moves.

numbered consecutively from 1 to n2, starting in the bottom left corner and
proceeding row by row from bottom to top, with rows alternating to the
left and right. Certain pairs of squares in this grid, always in different rows,
are connected by either “snakes” (leading down) or “ladders” (leading up).
Each square can be an endpoint of at most one snake or ladder.

You start with a token in cell 1, in the bottom left corner. In each move,
you advance your token up to k positions, for some fixed constant k. If the
token ends the move at the top end of a snake, it slides down to the bottom
of that snake. Similarly, if the token ends the move at the bottom end of a
ladder, it climbs up to the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of
moves required for the token to reach the last square of the grid.

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

Figure 5.15. A Snakes and Ladders board. Upward straight arrows are ladders; downward wavy arrows
are snakes.

13. The infamous Mongolian puzzle-warrior Vidrach Itky Leda invented the
following puzzle in the year 1473. The puzzle consists of an n × n grid
of squares, where each square is labeled with a positive integer, and two
tokens, one red and the other blue. The tokens always lie on distinct squares
of the grid. The tokens start in the top left and bottom right corners of the
grid; the goal of the puzzle is to swap the tokens.

27

5. BASIC GRAPH ALGORITHMS

In a single turn, you may move either token up, right, down, or left by a
distance determined by the other token. For example, if the red token is on a
square labeled 3, then you may move the blue token 3 steps up, 3 steps left,
3 steps right, or 3 steps down. However, you may not move either token off
the grid, and at the end of a move the two tokens cannot lie on the same
square.

Describe and analyze an efficient algorithm that either returns the
minimum number of moves required to solve a given Vidrach Itky Leda
puzzle, or correctly reports that the puzzle has no solution. For example,
given the puzzle in Figure 5.16, your algorithm would return the number 5.

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

Figure 5.16. A five-move solution for a 4× 4 Vidrach Itky Leda puzzle.

14. Suppose you are given a directed graph G = (V, E) and two vertices s and t.
Describe and analyze an algorithm to determine if there is a walk in G from s
to t (possibly repeating vertices and/or edges) whose length is divisible
by 3.

For example, given the graph shown below, with the indicated ver-
tices s and t, your algorithm should return True, because the walk
s�w�y�x�s�w�t has length 6.

x y

ws

z

t

15. Suppose you are given a directed graph G where some edges are red and the
remaining edges are blue. Describe an algorithm to find the shortest walk
in G from one vertex s to another vertex t in which no three consecutive
edges have the same color. That is, if the walk contains two red edges in a
row, the next edge must be blue, and if the walk contains two blue edges in
a row, the next edge must be red.

For example, given the following graph as input, your algorithm should
return the integer 7, because s→a→b⇒d→c⇒a→b→t is the shortest legal
walk from s to t.

s a b

c d t

28

Exercises

16. Consider a directed graph G, where each edge is colored either red, white,
or blue. A walk in G is called a French flag walk if its sequence of edge
colors is red, white, blue, red, white, blue, and so on. More formally, a walk
v0�v1� · · ·�vk is a French flag walk if, for every integer i, the edge vi�vi+1
is red if i mod 3= 0, white if i mod 3= 1, and blue if i mod 3= 2.

Describe an algorithm to find all vertices in G that can be reached from
a given vertex v through a French flag walk.

17. There are n galaxies connected by m intergalactic teleport-ways. Each
teleport-way joins two galaxies and can be traversed in both directions. Also,
each teleport-way e has an associated cost of c(e) dollars, where c(e) is a
positive integer. A teleport-way can be used multiple times, but the toll must
be paid every time it is used.

Judy wants to travel from galaxy s to galaxy t, but teleportation is not
very pleasant and she would like to minimize the number of times she needs
to teleport. However, she wants the total cost to be a multiple of five dollars,
because carrying small change is not pleasant either.
(a) Describe and analyze an algorithm to compute the smallest number of

times Judy needs to teleport to travel from galaxy s to galaxy t so that
the total cost is a multiple of five dollars.

(b) Solve part (a), but now assume that Judy has a coupon that allows her
to use exactly one teleport-way for free.

18. Three Seashells is a solitaire game, played on a connected undirected
graph G. Initially, three tokens are placed on distinct start vertices a, b, c.
In each turn, you must move all three tokens, by moving each token along
an edge from its current vertex to an adjacent vertex. At the end of each
turn, the three tokens must lie on three different vertices. Your goal is to
move the tokens onto three goal vertices x , y, z; it does not matter which
token ends up on which goal vertex.

a b c

x y z

a b c

x y z

a b c

x y z

a b c

x y z

a b c

x y z

Figure 5.17. The initial configuration of the Three Seashells puzzle and the first two turns of a solution.

Describe and analyze an algorithm to determine whether a given Three
Seashells puzzle is solvable. Your input consists of the graph G, the start
vertices a, b, c, and the goal vertices x , y, z. Your output is a single bit: True
or False.

29

5. BASIC GRAPH ALGORITHMS

19. Let G be a connected undirected graph. Suppose we start with two coins on
two arbitrarily chosen vertices of G, and we want to move the coins so that
they lie on the same vertex using as few moves as possible. At every step,
each coin must move to an adjacent vertex.
(a) Describe and analyze an algorithm to compute the minimum number of

steps to reach a configuration where both coins are on the same vertex,
or to report correctly that no such configuration is reachable. The input
to your algorithm consists of a graph G = (V, E) and two vertices u, v ∈ V
(which may or may not be distinct).

(b) Now suppose there are three coins. Describe and analyze an algorithm
to compute the minimum number of steps to reach a configuration where
both coins are on the same vertex, or to report correctly that no such
configuration is reachable.

(c) Finally, suppose there are forty-two coins. Describe and analyze an
algorithm to determine whether it is possible to move all 42 coins to the
same vertex. Again, every coin must move at every step. For full credit,
your algorithm should run in O(V + E) time.

20. One of my daughter’s elementary-school math workbooks15 contains several
puzzles of the following type:

Complete each angle maze below by tracing a path from start to finish that
has only acute angles.

Start Finish

Start Finish

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.
You are given a connected undirected graph G, whose vertices are points

in the plane and whose edges are line segments. Edges do not intersect,
except at their endpoints. For example, a drawing of the letter X would have
five vertices and four edges, and the first maze above has 18 vertices and 21
edges. You are also given two vertices Start and Finish.

Your algorithm should return True if G contains a walk from Start to
Finish that has only acute angles, and False otherwise. Formally, a walk
through G is valid if, for any two consecutive edges u�v�w in the walk,
either ∠uvw= π or 0< ∠uvw< π/2. Assume you have a subroutine that
can determine in O(1) time whether the angle between two given segments
is straight, obtuse, right, or acute.

15Jason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https:
//www.beastacademy.com/resources/printables.php for several more examples.

30

https://www.beastacademy.com/resources/printables.php
https://www.beastacademy.com/resources/printables.php

Exercises

21. Suppose you are given a set of n horizontal and vertical line segments and
two points s and t in the plane. Describe an efficient algorithm to determine
if there is a path from s to t that does not intersect any of the given line
segments.

Each horizontal line segment is specified by its left and right x-coordinates
and its unique y-coordinate; similarly, each vertical line segment is specified
by its unique x-coordinate and its top and bottom y-coordinates. Finally,
the points s and t are each specified by their x- and y-coordinates.

Figure 5.18. A path between two points in a maze of horizontal and vertical line segments.

22. Every cheesy romance movie has a scene where the romantic couple, after
a long and frustrating separation, suddenly see each other across a long
distance, and then slowly approach one another with unwavering eye contact
as the music rolls in and the rain lifts and the sun shines through the clouds
and the music swells and everyone starts dancing with rainbows and kittens
and chocolate unicorns and. . . .16

Suppose a romantic couple—in grand computer science tradition, named
Alice and Bob—enters their favorite park at the east and west entrances and
immediately establish eye-contact. They can’t just run directly to each other;
instead, they must stay on the path that zig-zags through the park between
the east and west entrances. To maintain the proper dramatic tension, Alice
and Bob must traverse the path so that they always lie on a direct east-west
line.

We can describe the zigzag path as two arrays X [0 .. n] and Y [0 .. n],
containing the x- and y-coordinates of the corners of the path, in order from
the southwest endpoint to the southeast endpoint. The X array is sorted in
increasing order, and Y [0] = Y [n]. The path is a sequence of straight line
segments connecting these corners.
(a) Suppose Y [0] = Y [n] = 0 and Y [i]> 0 for every other index i; that is,

the endpoints of the path are strictly below every other point on the path.
16Fun fact: Damien Chazelle, the director of Whiplash and La La Land, is the son of Princeton

computer science professor and electric guitarist Bernard Chazelle.

31

5. BASIC GRAPH ALGORITHMS

Figure 5.19. Alice and Bob meet. Alice walks backward in step 2, and Bob walks backward in steps 5
and 6.

Prove that for any path P meeting these conditions, Alice and Bob can
always meet. [Hint: Describe a graph that models all possible locations
of the couple along the path. What are the vertices of this graph? What
are the edges? Use the Handshake Lemma: Every graph has an even
number of vertices with odd degree.]

(b) If the endpoints of the path are not below every other vertex, Alice and
Bob might still be able to meet, or they might not. Describe an algorithm
to decide whether Alice and Bob can meet, without either breaking
east-west eye contact or stepping off the path, given the arrays X [0 .. n]
and Y [0 .. n] as input.

♥(c) Describe an algorithm for part (b) that runs in O(n) time.

23. The famous puzzle-maker Kaniel the Dane invented a solitaire game played
with two tokens on an n × n square grid. Some squares of the grid are
marked as obstacles, and one grid square is marked as the target. In each
turn, the player must move one of the tokens from is current position as far
as possible upward, downward, right, or left, stopping just before the token
hits (1) the edge of the board, (2) an obstacle square, or (3) the other token.
The goal is to move either of the tokens onto the target square.

For example, we can solve the puzzle shown in Figure 5.20 by moving
the red token down until it hits the obstacle, then moving the green token
left until it hits the red token, and then moving the red token left, down,
right, and up. The red token stops at the target on the 6th move because the
green token is just above the target square.

Describe and analyze an algorithm to determine whether an instance of
this puzzle is solvable. Your input consist of the integer n, a list of obstacle
locations, the target location, and the initial locations of the tokens. The

32

Exercises

1
2

3

4
5

6

Figure 5.20. An instance of Kaniel the Dane’s puzzle that can be solved in six moves. Circles indicate
initial token positions; black squares are obstacles; the center square is the target.

output of your algorithm is a single boolean: True if the given puzzle is
solvable and False otherwise. [Hint: Don’t forget about the time required
to construct the graph.]

♥24. Rectangle Walk is a new abstract puzzle game, available for only 99¢ on
Steam, iOS, Android, Xbox One, Playstation 5, Nintendo Wii U, Atari 2600,
Palm Pilot, Commodore 64, TRS-80, Sinclair ZX-1, DEC PDP-8, PLATO,
Zuse Z3, Duramesc, Odhner Arithmometer, Analytical Engine, Jacquard
Loom, Horologium Mirabile Lundense, Leibniz Stepped Reckoner, Al-Jazari’s
Robot Band, Yan Shi’s Automaton, Antikythera Mechanism, Knotted Rope,
Ishango Bone, and Pile of Rocks.

The game is played on an n×n grid of black andwhite squares. The player
moves a rectangle through this grid, subject to the following conditions:
• The rectangle must be aligned with the grid; that is, the top, bottom,

left, and right coordinates must be integers.
• The rectangle must fit within the n× n grid, and it must contain at least

one grid cell.
• The rectangle must not contain a black square.
• In a single move, the player can replace the current rectangle r with any

rectangle r ′ that either contains r or is contained in r.
Initially, the player’s rectangle is a 1× 1 square in the upper right corner.
The player’s goal is to reach a 1× 1 square in the bottom left corner using
as few moves as possible.

Figure 5.21. The first five steps of a Rectangle Walk.

33

5. BASIC GRAPH ALGORITHMS

Describe and analyze an algorithm to compute the length of the shortest
Rectangle Walk in a given bitmap. Your input is an array M[1 .. n, 1 .. n],
where M[i, j] = 1 indicates a black square and M[i, j] = 0 indicates a
white square. Assume that a valid rectangle walk exists; in particular,
M[1, 1] = M[n, n] = 0. For example, given the bitmap shown above, your
algorithm should return the integer 18. [Hint: Don’t forget about the time
required to construct the graph!!]

25. Racetrack (also known as Graph Racers and Vector Rally) is a two-player
paper-and-pencil racing game that Jeff played on the bus in 5th grade.17 The
game is played with a track drawn on a sheet of graph paper. The players
alternately choose a sequence of grid points that represent the motion of a
car around the track, subject to certain constraints explained below.

velocity position
(0,0) (1, 5)
(1,0) (2, 5)
(2,−1) (4, 4)
(3,0) (7, 4)
(2,1) (9, 5)
(1,2) (10, 7)
(0,3) (10, 10)
(−1,4) (9, 14)
(0,3) (9, 17)
(1,2) (10, 19)
(2,2) (12,21)
(2,1) (14,22)
(2,0) (16,22)
(1,−1) (17,21)
(2,−1) (19,20)
(3,0) (22,20)
(3,1) (25,21)

ST
A
RT

FIN
ISH

Figure 5.22. A 16-step Racetrack run, on a 25× 25 track. This is not the shortest run on this track.

Each car has a position and a velocity, both with integer x- and y-
coordinates. A subset of grid squares is marked as the starting area, and
another subset is marked as the finishing area. The initial position of each car
is chosen by the player somewhere in the starting area; the initial velocity of
each car is always (0, 0). At each step, the player optionally increments or
decrements either or both coordinates of the car’s velocity; in other words,
each component of the velocity can change by at most 1 in a single step. The
car’s new position is then determined by adding the new velocity to the car’s
previous position. The new position must be inside the track; otherwise, the
car crashes and that player loses the race. The race ends when the first car
reaches a position inside the finishing area.

17The actual game is a bit more complicated than the version described here. See http:
//harmmade.com/vectorracer/ for an excellent online version.

34

http://harmmade.com/vectorracer/
http://harmmade.com/vectorracer/

Exercises

Suppose the racetrack is represented by an n× n array of bits, where
each 0 bit represents a grid point inside the track, each 1 bit represents a
grid point outside the track, the “starting area” is the first column, and the
“finishing area” is the last column.

Describe and analyze an algorithm to find the minimum number of steps
required to move a car from the starting line to the finish line of a given
racetrack.

26. A rolling die maze is a puzzle involving a standard six-sided die (a cube with
numbers on each side) and a grid of squares. You should imagine the grid
lying on a table; the die always rests on and exactly covers one square of
the grid. In a single step, you can roll the die 90 degrees around one of its
bottom edges, moving it to an adjacent square one step north, south, east,
or west.

Some squares in the grid may be blocked; the die can never rest on a
blocked square. Other squares may be labeled with a number; whenever the
die rests on a labeled square, the number on the top face of the die must
equal the label. Squares that are neither labeled nor marked are free. You
may not roll the die off the edges of the grid. A rolling die maze is solvable
if it is possible to place a die on the lower left square and roll it to the upper
right square under these constraints.

Figure 5.23. Rolling a die

Figure 5.24 shows four rolling die mazes. Assuming we use a standard
die with 1 and 6 on opposite sides, only the first two mazes are solvable.
For example, the first maze is solvable by by placing the die on the lower
left square with 1 on the top face, and then rolling the die east, then north,
then north, then east.

1

1

3

1

6

1

1

1

Figure 5.24. Four rolling die mazes; only the first two are solvable.

(a) Suppose the input is a two-dimensional array L[1 .. n, 1 .. n], where each
entry L[i, j] stores the label of the square in the ith row and jth column,
where 0 means the square is free and −1 means the square is blocked.

35

5. BASIC GRAPH ALGORITHMS

Describe and analyze a polynomial-time algorithm to determine whether
the given rolling die maze is solvable.

♥(b) Now suppose the maze is specified implicitly by a list of labeled and
blocked squares. Specifically, suppose the input consists of an integer M ,
specifying the height and width of the maze, and an array S[1 .. n],
where each entry S[i] is a triple (x , y, L) indicating that square (x , y)
has label L. As in the explicit encoding, label −1 indicates that the
square is blocked; free squares are not listed in S at all. Describe and
analyze an efficient algorithm to determine whether the given rolling
die maze is solvable. For full credit, the running time of your algorithm
should be polynomial in the input size n.

[Hint: You have some freedom in how to place the initial die. There are
rolling die mazes that can be solved only if the initial position is chosen
correctly.]

♥27. Suppose you are given an arbitrary directed graph G in which each edge is
colored either red or blue, along with two special vertices s and t.

(a) Describe an algorithm that either computes a walk from s to t such that
the pattern of red and blue edges along the walk is a palindrome, or
correctly reports that no such walk exists.

(b) Describe an algorithm that either computes the shortest walk from s
to t such that the pattern of red and blue edges along the walk is a
palindrome, or correctly reports that no such walk exists.

[Hint: Where did we last see palindromes?]

♠♥28. Draughts, also known in the United States as “checkers”, is a game played
on an m×m grid of squares, alternately colored light and dark.18 The game
is usually played on an 8×8 or 10×10 board, but the rules easily generalize
to any board size. Each dark square is occupied by at most one game piece
(usually called a checker in the U.S.), which is either black or white; light
squares are always empty. One player (“White”) moves the white pieces;
the other (“Black”) moves the black pieces. A player loses when her last
piece is taken off the board.

18The counting tables used by medieval English government accountants were covered by a
green cloth with black squares in a checker pattern; disk-shaped counters were placed in these
squares to represent values. For this reason, the British government’s accountants have been
collectively known since the 10th century as the Exchequer. The actual counting tables were used
by the Exchequer to tally tax payments well into the 19th century.

36

Exercises

Consider the following simple version of the game, essentially American
checkers or British draughts, but where every piece is a king.19 Pieces can
be moved in any of the four diagonal directions. On each turn, a player
either moves one of her pieces one step diagonally into an empty square,
or makes a series of jumps with one of her pieces. In each jump, the piece
moves to an empty square two steps away in any diagonal direction, but
only if the intermediate square is occupied by a piece of the opposite color;
this enemy piece is captured and immediately removed from the board. All
jumps in the same turn must be made with the same piece.

Describe an algorithm to decide whether White can capture every black
piece, thereby winning the game, in a single turn. The input consists of
the width of the board (m), a list of positions of white pieces, and a list
of positions of black pieces. For full credit, your algorithm should run
in O(n) time, where n is the total number of pieces. [Hint: The greedy
strategy—make arbitrary jumps until you get stuck—does not always find
a winning sequence of jumps even when one exists. See problem 5. Parity,
parity, parity.]

1

5

6

4

8

7

9

2

3

10

11

Figure 5.25. White wins in one turn.

Figure 5.26. White cannot win in one turn from either of these positions.

19Most other variants of draughts have “flying kings”, which behave very differently than kings
in the British/American game, and which make this problem much more difficult, as we will see
in Chapter ??.

37

	Basic Graph Algorithms
	Introduction and History
	Basic Definitions
	Representations and Examples
	Data Structures
	Whatever-First Search
	Important Variants
	Graph Reductions: Flood Fill
	Exercises

