A **subsequence** of a sequence (for example, an array, a linked list, or a string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a **substring** if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string \(\varepsilon \) are all substrings of SUBSEQUENCE;
- SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze **dynamic programming** algorithms for the following longest-subsequence problems. Use the recurrences you developed on Wednesday.

1. Given an array \(A[1..n] \) of integers, compute the length of a longest **increasing** subsequence of \(A \). A sequence \(B[1..\ell] \) is increasing if \(B[i] > B[i - 1] \) for every index \(i \geq 2 \).

2. Given an array \(A[1..n] \) of integers, compute the length of a longest **decreasing** subsequence of \(A \). A sequence \(B[1..\ell] \) is decreasing if \(B[i] < B[i - 1] \) for every index \(i \geq 2 \).

3. Given an array \(A[1..n] \) of integers, compute the length of a longest **alternating** subsequence of \(A \). A sequence \(B[1..\ell] \) is alternating if \(B[i] < B[i - 1] \) for every even index \(i \geq 2 \), and \(B[i] > B[i - 1] \) for every odd index \(i \geq 3 \).

4. Given an array \(A[1..n] \) of integers, compute the length of a longest **convex** subsequence of \(A \). A sequence \(B[1..\ell] \) is convex if \(B[i] - B[i - 1] > B[i - 1] - B[i - 2] \) for every index \(i \geq 3 \).

5. Given an array \(A[1..n] \), compute the length of a longest **palindrome** subsequence of \(A \). Recall that a sequence \(B[1..\ell] \) is a palindrome if \(B[i] = B[\ell - i + 1] \) for every index \(i \).
Basic steps in developing a dynamic programming algorithm

1. **Formulate the problem recursively.** This is the hard part. There are two distinct but equally important things to include in your formulation.

 (a) **Specification.** First, give a clear and precise English description of the problem you are claiming to solve. Not *how* to solve the problem, but *what* the problem actually is. Omitting this step in homeworks or exams will cost you significant points.

 (b) **Solution.** Second, give a clear recursive formula or algorithm for the whole problem in terms of the answers to smaller instances of *exactly* the same problem. It generally helps to think in terms of a recursive definition of your inputs and outputs. If you discover that you need a solution to a *similar* problem, or a slightly *related* problem, you’re attacking the wrong problem; go back to step 1.

 (c) **Don’t optimize prematurely.** It may be tempting to ignore “obviously” suboptimal choices, because that will yield an “obviously” faster algorithm, but it’s usually a bad idea, for two reasons. First, the optimization may not actually improve the running time of the final dynamic programming algorithm. But more importantly, many “obvious” optimizations are actually incorrect! *First make it work; then optimize.*

2. **Build solutions to your recurrence from the bottom up.** Write an algorithm that starts with the base cases of your recurrence and works its way up to the final solution, by considering intermediate subproblems in the correct order.

 (a) **Identify the subproblems.** What are all the different ways can your recursive algorithm call itself, starting with some initial input?

 (b) **Analyze running time.** Add up the running times of all possible subproblems, *ignoring the recursive calls.*

 (c) **Choose a memoization data structure.** For most problems, each recursive subproblem can be identified by a few integers, so you can use a multidimensional array. But some problems need a more complicated data structure.

 (d) **Identify dependencies.** Except for the base cases, every recursive subproblem depends on other subproblems—which ones? Draw a picture of your data structure, pick a generic element, and draw arrows from each of the other elements it depends on. Then formalize your picture.

 (e) **Find a good evaluation order.** Order the subproblems so that each subproblem comes *after* the subproblems it depends on. Typically, you should consider the base cases first, then the subproblems that depends only on base cases, and so on. *Be careful!*

 (f) **Write down the algorithm.** You know what order to consider the subproblems, and you know how to solve each subproblem. So do that! If your data structure is an array, this usually means writing a few nested for-loops around your original recurrence.

3. **Try to improve.** What’s the bottleneck in your algorithm? Can you find a faster algorithm by modifying the recurrence? Can you tighten the time analysis? *Now* is the time to think about removing “obviously” redundant or suboptimal choices. (But always make sure that your optimizations are correct!!)