Let L be an arbitrary regular language over the alphabet $\Sigma = \{0, 1\}$. Prove that the following languages are also regular. (You probably won’t get to all of these during the lab session.)

1. Let $\text{INSERTAny1s}(L)$ is the set of all strings that can be obtained from strings in L by inserting any number of 1s anywhere in the string. For example:

$$\text{INSERTAny1s}(\{\varepsilon, 1, 00\}) = \{\varepsilon, 1, 11, 111, \ldots, 00, 100, 011110, 11101111101111, \ldots\}$$

Prove that the language $\text{INSERTAny1s}(L)$ is regular.

Solution: Let $M = (Q, s, A, \delta)$ be an arbitrary DFA that accepts the regular language L. We construct a new NFA with ε-transitions $M' = (Q', s', A', \delta')$ that accepts $\text{INSERTAny1s}(L)$ as follows.

Intuitively, M' guesses which 1s in the input string have been inserted, skips over those 1s, and simulates M on the original string w. M' has the same states and start state and accepting states as M, but it has a different transition function.

- $Q' = Q$
- $s' = s$
- $A' = A$
- $\delta'(q, \emptyset) = \{ \delta(q, \emptyset) \}$
- $\delta'(q, 1) = \{ \}$
- $\delta'(q, \varepsilon) = \{ \}$
2. Let $\text{DELETEAny1s}(L)$ is the set of all strings that can be obtained from strings in L by inserting any number of 1s anywhere in the string. For example:

$$\text{DELETEAny1s}([\epsilon, \ 00, 1101]) = [\epsilon, 0, 00, 01, 10, 101, 110, 1101]$$

Prove that the language $\text{DELETEAny1s}(L)$ is regular.

Solution: Let $M = (Q, s, A, \delta)$ be an arbitrary DFA that accepts the regular language L. We construct a new NFA with ϵ-transitions $M' = (Q', s', A', \delta')$ that accepts $\text{DELETEAny1s}(L)$ as follows.

Intuitively, M' guesses where 1s have been deleted from its input string, and simulates the original machine M on the guessed mixture of input symbols and 1s. M' has the same states and start state and accepting states as M, but a different transition function.

- $Q' = Q$
- $s' = s$
- $A' = A$
- $\delta'(q, \epsilon) = \{ \delta(q, \epsilon) \}$
- $\delta'(q, 0) = \{ \}$
- $\delta'(q, 1) = \{ \}$
- $\delta'(q, \epsilon) = \{ \}$

\blacksquare
3. Let $\text{InsertOne}_1(L) := \{ x1y \mid xy \in L \}$ denote the set of all strings that can be obtained from strings in L by inserting \textit{exactly one} 1. For example:

$\text{InsertOne}_1(\{\epsilon, 00, 101101\}) = \{ 1, 100, 010, 001, 1101101, 101101, 101111 \}$

Prove that the language $\text{InsertOne}_1(L)$ is regular.

\textbf{Solution:} Let $M = (Q, s, A, \delta)$ be an arbitrary DFA that accepts the regular language L. We construct a new \textit{NFA with \texttt{\textepsilon}-transitions} $M' = (Q', s', A', \delta')$ that accepts $\text{InsertOne}_1(L)$ as follows.

If the input string w does not contain a 1, then M' must reject it; otherwise, intuitively, M' \textit{guesses} which 1 was inserted into w, skips over that 1, and simulates M on the remaining string xy.

M' consists of two copies of M, one to process the prefix x and the other to process the suffix y. State (q, False) means (the simulation of) M is in state q and M' has not yet skipped over a 1. State (q, True) means (the simulation of) M is in state q and M' has already skipped over a 1.

\begin{align*}
Q' &= Q \times \{\text{True}, \text{False}\} \\
s' &= (s, \text{False}) \\
A' &= \\
\delta'(q, \text{False}), \text{\theta} &= \{ (\delta(q, \text{\theta}), \text{\texttt{\textepsilon}}) \} \\
\delta'(q, \text{False}), 1 &= \{} \\
\delta'(q, \text{False}), \text{\texttt{\textepsilon}} &= \{} \\
\delta'(q, \text{True}), \text{\theta} &= \{} \\
\delta'(q, \text{True}), 1 &= \{} \\
\delta'(q, \text{True}), \text{\texttt{\textepsilon}} &= \{}
\end{align*}
4. Let \(\text{DELETEONE}1(L) := \{xy \mid x1y \in L\} \) denote the set of all strings that can be obtained from strings in \(L \) by deleting exactly one 1. For example:

\[
\text{DELETEONE}1(\{\varepsilon, 00, 101101\}) = \{01101, 10101, 10110\}
\]

Prove that the language \(\text{DELETEONE}1(L) \) is regular.

Solution: Let \(M = (\Sigma, Q, s, A, \delta) \) be a DFA that accepts the regular language \(L \). We construct an NFA with \(\varepsilon \)-transitions \(M' = (\Sigma, Q', s', A', \delta') \) that accepts \(\text{DELETEONE}1(L) \) as follows.

Intuitively, \(M' \) guesses where the 1 was deleted from its input string. It simulates the original DFA \(M \) on the prefix \(x \) before the missing 1, then the missing 1, and finally the suffix \(y \) after the missing 1.

\(M' \) consists of two copies of \(M \), one to process the prefix \(x \) and the other to process the suffix \(y \). State \((q, \text{FALSE})\) means (the simulation of) \(M \) is in state \(q \) and \(M' \) has not yet reinserted a 1. State \((q, \text{TRUE})\) means (the simulation of) \(M \) is in state \(q \) and \(M' \) has already reinserted a 1.

\[
\begin{align*}
Q' &= Q \times \{\text{TRUE}, \text{FALSE}\} \\
s' &= (s, \text{FALSE}) \\
A' &= \\
\delta'(\langle q, \text{FALSE} \rangle, 0 &= \{(q, 0, \text{FALSE}) \} \\
\delta'(\langle q, \text{FALSE} \rangle, 1 &= \{} \\
\delta'(\langle q, \text{FALSE} \rangle, \varepsilon &= \{} \\
\delta'(\langle q, \text{TRUE} \rangle, 0 &= \{} \\
\delta'(\langle q, \text{TRUE} \rangle, 1 &= \{} \\
\delta'(\langle q, \text{TRUE} \rangle, \varepsilon &= \{}
\end{align*}
\]
Work on these later: Consider the following recursively defined function on strings:

\[
evens(w) := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
\epsilon & \text{if } w = a \text{ for some symbol } a \\
b \cdot evens(x) & \text{if } w = abx \text{ for some symbols } a \text{ and } b \text{ and some string } x
\end{cases}
\]

Intuitively, \(evens(w) \) skips over every other symbol in \(w \), starting with the first symbol. For example, \(evens(\text{THE\textbullet\textsc{SNAIL}}) = \text{H\textbullet\textsc{NI}} \) and \(evens(\text{GROB\textbullet\textsc{GOB\textbullet\textsc{GLOB\textbullet\textsc{GROD}}} = \text{RBGBG\textbullet\textsc{GO}}.} \)

Let \(L \) be an arbitrary regular language over the alphabet \(\Sigma = \{0, 1\} \).

5. Prove that the language \(\text{Unevens}(L) := \{w \mid evens(w) \in L\} \) is regular.

6. Prove that the language \(\text{Evens}(L) := \{evens(w) \mid w \in L\} \) is regular.