Let L be an arbitrary regular language over the alphabet $\Sigma=\{0,1\}$. Prove that the following languages are also regular. (You probably won't get to all of these during the lab session.)

1. Let InsertAny1s(L) is the set of all strings that can be obtained from strings in L by inserting any number of 1 s anywhere in the string. For example:
$\operatorname{InsertAny1s}(\{\varepsilon, 1,00\})=\{\varepsilon, 1,11,111, \ldots, 00,100,0111110,1110111111101111, \ldots\}$
Prove that the language InsertAny1s (L) is regular.
Solution: Let $M=(Q, s, A, \delta)$ be an arbitrary DFA that accepts the regular language L. We construct a new NFA with ε-transitions $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts InsertAny1s(L) as follows.

Intuitively, M^{\prime} guesses which 1 s in the input string have been inserted, skips over those 1 s , and simulates M on the original string $w . M^{\prime}$ has the same states and start state and accepting states as M, but it has a different transition function.

$$
\begin{aligned}
Q^{\prime} & =Q \\
s^{\prime} & =s \\
A^{\prime} & =A \\
\delta^{\prime}(q, 0) & =\{\delta(q, 0)\} \\
\delta^{\prime}(q, 1) & =\{ \\
\delta^{\prime}(q, \varepsilon) & =\{
\end{aligned}
$$

2. Let DeleteAny1s (L) is the set of all strings that can be obtained from strings in L by inserting any number of 1 s anywhere in the string. For example:

$$
\operatorname{DeleteAny} 1 \mathrm{~s}(\{\varepsilon, 00,1101\})=\{\varepsilon, 0,00,01,10,101,110,1101\}
$$

Prove that the language DeleteAny1s (L) is regular.
Solution: Let $M=(Q, s, A, \delta)$ be an arbitrary DFA that accepts the regular language L. We construct a new NFA with ε-transitions $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts DeleteAny $1 s(L)$ as follows.

Intuitively, M^{\prime} guesses where 1 s have been deleted from its input string, and simulates the original machine M on the guessed mixture of input symbols and 1 s . M^{\prime} has the same states and start state and accepting states as M, but a different transition function.

$$
\begin{aligned}
Q^{\prime} & =Q \\
s^{\prime} & =s \\
A^{\prime} & =A \\
\delta^{\prime}(q, 0) & =\{\delta(q, 0)\} \\
\delta^{\prime}(q, 1) & =\{ \\
\delta^{\prime}(q, \varepsilon) & =\{
\end{aligned}
$$

3. Let InsertOne1 $(L):=\{x 1 y \mid x y \in L\}$ denote the set of all strings that can be obtained from strings in L by inserting exactly one 1 . For example:
$\operatorname{InsertOne} 1(\{\varepsilon, 00,101101\})=\{1,100,010,001,1101101,1011101,1011011\}$
Prove that the language Insertone1 (L) is regular.
Solution: Let $M=(Q, s, A, \delta)$ be an arbitrary DFA that accepts the regular language L. We construct a new NFA with ε-transitions $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts InsertOne1 (L) as follows.

If the input string w does not contain a 1 , then M^{\prime} must rejects it; otherwise, intuitively, M^{\prime} guesses which 1 was inserted into w, skips over that 1, and simulates M on the remaining string $x y$.
M^{\prime} consists of two copies of M, one to process the prefix x and the other to process the suffix y. State (q, FALSE) means (the simulation of) M is in state q and M^{\prime} has not yet skipped over a 1 . State (q, True) means (the simulation of) M is in state q and M^{\prime} has already skipped over a 1.

$$
\begin{array}{rlrl}
Q^{\prime} & =Q \times\{\text { TRUE, FALSE }\} \\
s^{\prime} & =(s, \text { FALSE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, \text { FALSE }), 0) & =\{(\delta(q, 0), \text { FALSE })\} \\
\delta^{\prime}((q, \text { FALSE }), 1) & =\{ & \} \\
\delta^{\prime}((q, \text { FALSE }), \varepsilon) & =\{ & \} \\
\delta^{\prime}((q, \text { TRUE }), 0) & =\{ & \} \\
\delta^{\prime}((q, \text { TRUE }), 1) & =\{ & & \} \\
\delta^{\prime}((q, \text { TRUE }), \varepsilon) & =\{ &
\end{array}
$$

4. Let DeleteOne1 $(L):=\{x y \mid x 1 y \in L\}$ denote the set of all strings that can be obtained from strings in L by deleting exactly one 1. For example:

$$
\operatorname{DeleteOne} 1(\{\varepsilon, 00,101101\})=\{01101,10101,10110\}
$$

Prove that the language DeleteOne1 (L) is regular.
Solution: Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts the regular language L. We construct an NFA with ε-transitions $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts DeleteOne1 (L) as follows.

Intuitively, M^{\prime} guesses where the 1 was deleted from its input string. It simulates the original DFA M on the prefix x before the missing 1 , then the missing 1 , and finally the suffix y after the missing 1 .
M^{\prime} consists of two copies of M, one to process the prefix x and the other to process the suffix y. State (q, FALSE) means (the simulation of) M is in state q and M^{\prime} has not yet reinserted a 1 . State (q, TRUE) means (the simulation of) M is in state q and M^{\prime} has already reinserted a 1.

$$
\begin{array}{rlrl}
Q^{\prime} & =Q \times\{\text { TRUE }, \text { FALSE }\} \\
s^{\prime} & =(s, \text { FALSE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, \text { FALSE }), 0) & =\{(\delta(q, 0), \text { FALSE })\} \\
\delta^{\prime}((q, \text { FALSE }), 1) & =\{ & \} \\
\delta^{\prime}((q, \text { FALSE }), \varepsilon) & =\{ & \} \\
\delta^{\prime}((q, \text { TRUE }), 0) & =\{ & \} \\
\delta^{\prime}((q, \text { TRUE }), 1) & =\{ & & \} \\
\delta^{\prime}((q, \text { TRUE }), \varepsilon) & =\{ &
\end{array}
$$

Work on these later: Consider the following recursively defined function on strings:

$$
\operatorname{evens}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ \varepsilon & \text { if } w=a \text { for some symbol } a \\ b \cdot \operatorname{evens}(x) & \text { if } w=a b x \text { for some symbols } a \text { and } b \text { and some string } x\end{cases}
$$

Intuitively, evens (w) skips over every other symbol in w, starting with the first symbol. For example, evens $(T H E \diamond S N A I L)=H \diamond N I$ and evens $(G R O B \diamond G O B \diamond G L O B \diamond G R O D)=R B G B G O \diamond R D$.

Let L be an arbitrary regular language over the alphabet $\Sigma=\{0,1\}$.
5. Prove that the language $\operatorname{Unevens}(L):=\{w \mid \operatorname{evens}(w) \in L\}$ is regular.
6. Prove that the language $\operatorname{Evens}(L):=\{\operatorname{evens}(w) \mid w \in L\}$ is regular..

