Prove that each of the following languages is not regular, first using fooling sets and then (for problems 3, 4, and 5) using a reduction argument. You may use the fact (proven in class and in the lecture notes) that the language \(\{0^n 1^n \mid n \geq 0 \} \) is not regular. See the next page for a solved example showing both types of proof.

1. \(\{0^{2n} \mid n \geq 0 \} \)

2. \(\{0^{2n} 1^n \mid n \geq 0 \} \)

3. \(\{0^{m} 1^n \mid m \neq 2n \} \)

 [Hint: There is a short reduction argument, but write the fooling set argument first.]

4. Strings over \(\{0, 1\} \) where the number of 0s is exactly twice the number of 1s.

 [Hint: There is a short reduction argument, but write the fooling set argument first.]

5. Strings of properly nested parentheses (()), brackets [], and braces {}. For example, the string ([][)]{} is in this language, but the string ([]) is not, because the left and right delimiters don’t match.

 [Hint: There is a short reduction argument, but write the fooling set argument first.]

Harder problems to think about later:

6. Strings of the form \(w_1 \# w_2 \# \cdots \# w_n \) for some \(n \geq 2 \), where each substring \(w_i \) is a string in \(\{0, 1\}^* \), and some pair of substrings \(w_i \) and \(w_j \) are equal.

7. \(\{0^{n^2} \mid n \geq 0 \} \)

8. \(\{w \in (\{0, 1\})^ \mid w \) is the binary representation of a perfect square\}
Solved problem:

9. Prove that the language \(L = \{ w \in (0 + 1)^* \mid \#(0, w) = \#(1, w) \} \) is not regular.

Solution (fooling set \(0^* \)):

Consider the infinite set \(F = \{ 0^n \mid n \geq 0 \} \), or more simply \(F = 0^* \).

We claim that every pair of distinct strings in \(F \) has a distinguishing suffix.

Let \(x \) and \(y \) be arbitrary distinct strings in \(F \).

The definition of \(F \) implies \(x = 0^i \) and \(y = 0^j \) for some integers \(i \neq j \).

Let \(z \) be the string \(1^i \).

Then \(xz = 0^i 1^i \in L \).

But \(yz = 0^j 1^i \notin L \), because \(i \neq j \).

So \(z \) is a distinguishing suffix for \(x \) and \(y \).

We conclude that \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

This is exactly the proof from the lecture notes for the canonical non-regular language \(\{ 0^n 1^n \mid n \geq 0 \} \). The inner box is a proof that every pair of distinct strings in \(F \) has a distinguishing suffix.

Solution (fooling set \(0^* \)):

For any natural number \(n \), let \(x_n = 0^n \), and let \(F = \{ x_n \mid n \geq 0 \} = 0^* \).

Let \(i \) and \(j \) be arbitrary distinct natural numbers.

Let \(z_{ij} \) be the string \(1^i \).

Then \(x_i z_{ij} = 0^i 1^i \in L \).

But \(x_j z_{ij} = 0^j 1^i \notin L \), because \(i \neq j \).

So \(z_{ij} \) is a distinguishing suffix for \(x_i \) and \(x_j \).

We conclude that \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

This is another way of writing exactly the same proof that emphasizes the counter intuition; any algorithm that recognizes \(L \) must count 0s.

Solution (reduction via closure): For the sake of argument, suppose \(L \) is regular.

Then the language \(L \cap 0^n 1^n = \{ 0^n 1^n \mid n \geq 0 \} \) would also be regular, because regular languages are closed under intersection.

But we proved in class that \(\{ 0^n 1^n \mid n \geq 0 \} \) is not regular; we’ve reached a contradiction.

We conclude that \(L \) cannot be regular.

And this is why the proof for \(\{ 0^n 1^n \mid n \geq 0 \} \) also works verbatim for this language.