Recall from lecture that a regular expression is compact notation for a language (that is, a set of strings). Formally, a regular language is one of the following:

- The symbol \emptyset (representing the empty set)
- Any string (representing the set containing only that string)
- $R + S$ for some regular expressions R and S (representing alternation / union)
- $R \cdot S$ or RS for some regular expressions R and S (representing concatenation)
- R^* for some regular expression R (representing Kleene closure / unbounded repetition)

In the absence of parentheses, Kleene closure has highest precedence, followed by concatenation. For example, $1+01^* = \{0, 1, 01, 011, 0111, \ldots\}$, but $(1+01)^* = \{\epsilon, 1, 01, 11, 011, 101, 111, 0101, \ldots\}$.

Give regular expressions for each of the following languages over the binary alphabet $\{0, 1\}$. (For extra practice, find multiple regular expressions for each language.)

0. All strings.
1. All strings containing the substring 000.
2. All strings not containing the substring 000.
3. All strings in which every run of 0s has length at least 3.
4. All strings in which every 1 appears before every substring 000.
5. All strings containing at least three 0s.
6. Every string except 000. [Hint: Don’t try to be clever.]

More difficult problems to work on later:

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.
8. All strings containing at least two 0s and at least one 1.
9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.
10. All strings in which every run has odd length. (For example, 0001 and 100000111 and the empty string ϵ are in this language, but 00000 and 001000 are not.)
11. All strings in which the substring 000 appears an even number of times. (For example, 01100 and 000000 and the empty string ϵ are in this language, but 00000 and 001000 are not.)