1. Longest Dandelion: A dandelion of length ℓ consists of a path of length ℓ, with exactly ℓ new edges attached to one end. Prove that it is NP-hard to find the longest dandelion subgraph of a given undirected graph.

Two dandelions, one of length 7 and the other of length 15.
2. High-Degree Independent Set: Suppose we are given a graph G and an integer k. Prove that it is NP-hard to decide whether G contains an independent set of k vertices, each of which has degree at least k.
[Hint: Reduce from the decision version of the IndependentSet problem: Given a graph G and an integer k, does G contain an independent set of size k ?]
3. Half-Clique: Suppose we are given a graph G with $2 n$ vertices, for some integer n. Prove that it is NP-hard to decide whether G contains a complete subgraph with n vertices?
[Hint: Reduce from the decision version of the Clieve problem: Given a graph G and an integer k, does G contain a clique of size k ?]

