
CS/ECE 374 A = Fall 2023
9 Homework 7 :

Due Tuesday, October 17, 2023 at 9pm Central Time

1. The City Council of Sham-Poobanana needs to partition Purple Street into voting districts.
A total of n people live on Purple Street, at consecutive addresses 1,2, . . . , n. Each voting
district must be a contiguous interval of addresses i, i + 1, . . . , j for some 1≤ i < j ≤ n. By
law, each Purple Street address must lie in exactly one district, and the number of addresses
in each district must be between k and 2k, where k is a positive integer parameter.

Every election in Sham-Poobanana is between two rival factions: Oceania and Eurasia.
A majority of the current City Council are from Oceania, so they consider a district to
be good if more than half the residents of that district voted for Oceania in the previous
election. Naturally, the City Council has complete voting records for all n residents.

For example, the figure below shows a legal partition of 22 addresses (of which 9 are
good and 13 are bad) into 4 good districts and 3 bad districts, where k = 2 (so each district
contains either 2, 3, or 4 addresses). Each O indicates a vote for Oceania, and each X
indicates a vote for Eurasia.

Describe an algorithm to find the largest possible number of good districts in a legal
partition. Your input consists of the integer k and a boolean array GoodVote[1 .. n]
indicating which residents previously voted for Oceania (True) or Eurasia (False). You
can assume that a legal partition exists. Analyze the running time of your algorithm in
terms of the parameters n and k. (In particular, do not assume that k is a constant.)

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

2. The StupidScript language includes a binary operator @ that computes the average of its two
arguments. For example, the StupidScript code print(3 @ 6) would print 4.5, because
(3+ 6)/2= 4.5.

Expressions like 3 @ 7 @ 4 that use the @ operator more than once yield different results
when they are evaluated in different orders:

(3 @ 7) @ 4= 5 @ 4 = 4.5 but 3 @ (7 @ 4) = 3 @ 5.5 = 4.25

Here is a larger example:

((((8 @ 6) @ 7) @ 5) @ 3) @ (0 @ 9) = 4.5

((8 @ 6) @ (7 @ 5)) @ ((3 @ 0) @ 9) = 5.875

(8 @ (6 @ (7 @ (5 @ (3 @ 0))))) @ 9 = 7.890625

Your goal for this problem is to describe and analyze an algorithm to compute, given a
sequence of integers separated by @ signs, the largest possible value the expression can
take by adding parentheses. Your input is an array A[1 .. n] listing the sequence of integers.

For example, if your input sequence is [3,7, 4], your algorithm should return 4.5, and if
your input sequence is [8,6, 7,5, 3,0, 9], your algorithm should return 7.890625. Assume
all arithmetic operations (including @) can be performed exactly in O(1) time.

(a) Tommy Tutone suggests the following natural greedy algorithm: Merge the adjacent
pair of numbers with the smallest average (breaking ties arbitrarily), replace them
with their average, and recurse. For example:

8 @ 6 @ 7 @ 5 @ 3 @ 0 @9

8 @ 6 @ 7 @ 5 @ 1.5 @9

8 @ 6 @ 7 @ 3.25 @9

8 @ 6 @ 5.125 @9

8 @ 5.5625 @9

6.78125 @ 9

7.890625

Tommy reasons that with an efficient priority queue, this algorithm will run in
O(n log n) time, which is way faster than any dynamic programming algorithm.

Prove that Tommy’s algorithm is incorrect, by describing a specific input array and
proving that his algorithm does not yield the largest possible value for that array.

(b) Describe and analyze a correct algorithm for this problem. Poor, poor Tommy.

2

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

3. Practice only. Do not submit solutions.

Suppose we need to broadcast a message to all the nodes in a rooted binary tree.
Initially, only the root node knows the message. In a single round, any node that knows the
message can forward it to at most one of its children. See the figure below for an example.

Design an algorithm to compute the minimum number of rounds required to broadcast
the message to every node.

A message being distributed through a binary tree in five rounds.

3

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

Solved problems

3. A string w of parentheses (and) and brackets [and] is balanced if and only if w is
generated by the following context-free grammar:

S→ ϵ | (S) | [S] | SS

For example, the string w= ([()][]())[()()]() is balanced, because w= x y , where

x = ([()] [] ()) and y = [() ()] ().

Describe and analyze an algorithm to compute the length of a longest balanced subsequence
of a given string of parentheses and brackets. Your input is an array A[1 .. n], where
A[i] ∈ {(,),[,]} for every index i.

Solution: Suppose A[1 .. n] is the input string. For all indices i and k, let LBS(i, k)
denote the length of the longest balanced subsequence of the substring A[i .. k]. We
need to compute LBS(1, n). This function obeys the following recurrence:

LBS(i, k) =

0 if i ≥ k

max

2+ LBS(i + 1, k− 1)
k−1
max
j=1

�

LBS(i, j) + LBS(j + 1, k)
�

if A[i]∼ A[k]

k−1
max
j=1

�

LBS(i, j) + LBS(j + 1, k)
�

otherwise

Here A[i] ∼ A[k] indicates that A[i] is a left delimiter and A[k] is the corresponding
right delimiter: Either A[i] = (and A[k] =), or A[i] = [and A[k] =].

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n].
Because each entry LBS[i, k] depends only on entries in later rows or earlier columns
(or both), we can fill this array row-by-row from bottom up (decreasing i) in the outer
loop, scanning each row from left to right (increasing k) in the inner loop.

We can compute each entry LBS[i, k] in O(n) time, so the resulting algorithm runs
in O(n3) time. ■

Solution (pseudocode): The following algorithm runs in O(n3) time:

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for k← i + 1 to n

if (A[i] = (and A[k] =)) or (A[i] = [and A[k] =])
LBS[i, k]← LBS[i + 1, k− 1] + 2

else
LBS[i, k]← 0

for j← i to k− 1
LBS[i, k]←max

�

LBS[i, k], LBS[i, j] + LBS[j + 1, k]
	

return LBS[1, n]

4

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

Here LBS[i, k[stores the length of the longest balanced subsequence of the substring
A[i .. k]. ■

Rubric: 10 points, standard dynamic programming rubric. Yes, each of these solutions is indepen-
dently worth full credit.

5

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

4. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to computeMaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun+
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max{MaxFunYes(w),MaxFunNo(w)}

These recurrences do not require separate base cases, because
∑

∅= 0.a

We can memoize these functions by adding two additional fields v.yes and v.no
to each node v in the tree. The values at each node depend only on the vales at its
children, so we can compute all 2n values using a postorder traversal of T .

The resulting algorithm spends O(1) time at each node of T , and therefore runs in
O(n) time. ■

aA naïve recursive implementation of these recurrences would run in O(φn) time in the worst case,
where φ = (1+p5)/2≈ 1.618 is the golden ratio. The worst case occurs when T is a single path.

Solution (two functions, pseudocode): The following algorithm runs in O(n) time.

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes+w.no
v.no← v.no+max{w.yes, w.no}

6

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

We are storing two pieces of information in each node v of the tree:

• v.yes is the maximum total “fun” of a legal party among the descendants of v,
assuming v is invited.

• v.no is the maximum total “fun” of a legal party among the descendants of v,
assuming v is not invited.

(Yes, this is still dynamic programming; we’re only traversing the tree recursively in
ComputeMaxFun because that’s the most natural way to traverse trees!) ■

Solution (one function): For each node v in the input tree T , let MaxFun(v) denote
the maximum total “fun” of a legal party among the descendants of v, where v may
or may not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun+
∑

grandchildren w of root
MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) =max

v.fun+
∑

grandchildren x of v

MaxFun(x)

∑

children w of v

MaxFun(w)

(This recurrence does not require a separate base case, because
∑

∅ = 0.) We can
memoize this function by adding an additional field v.maxFun to each node v in
the tree. The value at each node depends only on the values at its children and
grandchildren, so we can compute all values using a postorder traversal of T .

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. ■

Solution (one function, pseudocode):

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party+ x .maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no+w.maxFun
for all children x of w

yes← yes+ x .maxFun
v.maxFun←max{yes,no}

Here v.maxFun stores the maximum total “fun” of a legal party among the descendants
of v, where v may or may not be invited.

7

CS/ECE 374 A Homework 7 (due October 17) Fall 2023

Each value v.maxFun is read at most three times during the algorithm’s execution:
Once in ComputeMaxFun(v.parent), and once in ComputeMaxFun(v.parent.parent),
and at most once in the non-recursive part of BestParty. Thus, the entire algorithm
runs in O(n) time. ■

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.
Yes, each of these solutions is independently worth full credit.

8

