
CS/ECE 374 A = Fall 2023
9 Homework 5 :

Due Tuesday, October 3, 2023 at 9pm Central Time

1. In the lab on Wednesday, you’ll see an algorithm that finds a local minimum in a one-
dimensional array in O(log n) time. This question asks you to consider two higher-
dimensional versions of this problem.

(a) Suppose we are given a two-dimensional array A[1 .. n, 1 .. n] of distinct integers. An
array element A[i, j] is called a local minimum if it is smaller than its four immediate
neighbors:

A[i, j]<min
�

A[i − 1, j], A[i + 1, j], A[i, j − 1], A[i, j + 1]
	

To avoid edge cases, we assume all cells in row 1, row n, column 1, and column n
have value +∞.

Describe and analyze an algorithm to find a local minimum in A as quickly as
possible. (Remember that faster algorithms are worth more points, but only if they
are correct.)

[Hint: Suppose A[i, j] is the smallest element in row i. If A[i, j] is smaller than
both of its vertical neighbors A[i−1, j] and A[i+1, j], we are clearly done. But what
if A[i, j]> A[i + 1, j]?]

[Hint: This problem is more subtle than it appears at first glance; many published
solutions for this problem on the internet are incorrect. The main issue is that a local
minimum in a rectangular subarray is not necessarily a local minimum in the original
array. Design a recursive algorithm for the following more general problem: Given a
two-dimensional array that contains a local minimum whose value is less than the
value of every border cell, find such a local minimum.]

(b) Now suppose we are given a three-dimensional array A[1 .. n, 1 .. n, 1 .. n] of distinct
integers. An array element A[i, j, k] is called a local minimum if it is smaller than its
six immediate neighbors:

A[i, j]<min

A[i − 1, j, k], A[i + 1, j, k],

A[i, j − 1, k], A[i, j + 1, k],

A[i, j, k− 1], A[i, j, k+ 1]

To avoid edge cases, we assume all cells on the boundary of the array have value +∞.
Describe and analyze an algorithm to find a local minimum in A as quickly as

possible.

(Remember that faster algorithms are worth more points, but only if they are correct.)

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

2. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively
subdivides the points as follows. First we split the box into two smaller boxes with a vertical
line, then we split each of those boxes with horizontal lines, and so on, always alternating
between horizontal and vertical splits. Each time we split a box, the splitting line partitions
the rest of the interior points as evenly as possible by passing through a median point in the
interior of the box (not on its boundary). If a box doesn’t contain any points, we don’t split
it any more; these final empty boxes are called cells.

A kd-tree for 15 points. The dashed line crosses the four shaded cells.

(a) How many cells does the kd-tree have, as a function of n? Prove that your answer is
correct.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function
of n? Prove that your answer is correct. Assume that n= 2k − 1 for some integer k.
[Hint: There is more than one function f such that f (15) = 4.]

(c) Suppose we have n points stored in a kd-tree. Describe and analyze an algorithm
that counts the number of points above a given horizontal line (such as the dashed
line in the figure) as quickly as possible. [Hint: Use part (b).]

I should have specified that the following information is stored in each internal
node v in the kd-tree:

• v.x and v.y: The coordinates of the point defining the cut at v

• v.dir ∈ {vertical,horizontal}: The direction of the cut at v.
• v.left and v.right: The children of v if v.dir= vertical
• v.up and v.down: The children of v if v.dir= horizontal
• v.size: the number of points=cuts in the subtree rooted at v.

Instead I allowed arbitrary information to be computed in preprocessing; that freedom
allows a much simpler and more efficient query algorithm!

(d) Describe and analyze an efficient algorithm that counts, given a kd-tree storing n
points, the number of points that lie inside a given rectangle R with horizontal and
vertical sides. [Hint: Use part (c).]

Assume that all x-coordinates and y-coordinates are distinct; that is, no two points lie on
the same horizontal line or the same vertical line, no point lies on the query line in part (c),
and no point lies on the boundary of the query rectangle in part (d).

2

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

⋆3. Practice only. Do not submit solutions.

The following variant of the infamous StoogeSort algorithm1 was discovered by the
British actor Patrick Troughton during rehearsals for the 20th anniversary Doctor Who
special “The Five Doctors”.2

WhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
WhoSort(A[1 .. 3k]) 〈〈Hartnell〉〉
WhoSort(A[2k+ 1 .. n]) 〈〈Troughton〉〉
WhoSort(A[1 .. 3k]) 〈〈Pertwee〉〉
WhoSort(A[k+ 1 .. 4k]) 〈〈Davison〉〉

(a) Prove by induction that WhoSort correctly sorts its input. [Hint: Where can the
smallest k elements be?]

(b) Would WhoSort still sort correctly if we replaced “if n< 13” with “if n< 4”? Justify
your answer.

(c) Would WhoSort still sort correctly if we replaced “k = ⌈n/5⌉” with “k = ⌊n/5⌋”?
Justify your answer.

(d) What is the running time of WhoSort? (Set up a running-time recurrence and then
solve it, ignoring the floors and ceilings.)

(e) Forty years later, 15th Doctor Ncuti Gatwa discovered the following optimization
to WhoSort, which uses the standard Merge subroutine from mergesort, which
merges two sorted arrays into one sorted array.

NuWhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
NuWhoSort(A[1 .. 3k]) 〈〈Grant〉〉
NuWhoSort(A[2k+ 1 .. n]) 〈〈Whittaker〉〉
Merge(A[1 .. 2k], A[2k+ 1 .. 4k]) 〈〈Tennant〉〉

What is the running time of NuWhoSort?

1https://en.wikipedia.org/wiki/Stooge_sort
2Tom Baker, the fourth Doctor, declined to return for the reunion; hence, only four Doctors appeared in “The Five

Doctors”. (Well, okay, technically the BBC used excerpts of the unfinished episode “Shada” to include Baker, but
he wasn’t really there—to the extent that any fictional character in a television show about a time traveling wizard
arguing with several other versions of himself about immortality can be said to be “really” “there”.)

3

https://en.wikipedia.org/wiki/Stooge_sort

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

Solved problems

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and
the other set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting
each point pi to the corresponding point qi. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(n log n) time.
See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may assume
that all 2n of these numbers are distinct. No proof of correctness is necessary, but you
should justify the running time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n]
to maintain correspondence between endpoints, in O(n log n) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i]>Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i]>Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

• Color the elements in the Left half Q[1 .. ⌊n/2⌋] bLue.
• Color the elements in the Right half Q[⌊n/2⌋+ 1 .. n] Red.
• Recursively count inversions in (and sort) the blue subarray Q[1 .. ⌊n/2⌋].
• Recursively count inversions in (and sort) the red subarray Q[⌊n/2⌋+ 1 .. n].
• Count red/blue inversions as follows:

– Merge the sorted subarrays Q[1 .. n/2] and Q[n/2+1 .. n], maintaining the
element colors.

– For each blue element Q[i] of the now-sorted array Q[1 .. n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

4

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

CountRedBlue(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count+ 1
else

total← total+ count
return total

Merge and CountRedBlue each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T (n) = 2T (n/2)+O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(n log n), as required.

Rubric: This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying
the Merge algorithm, without any need for “colors”. Here changes to the standard
Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ count
else if i > m

B[k]← A[j]; j← j + 1; count← count+ 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ count
else

B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize MergeAndCount by observing that count is always equal
to j −m− 1, so we don’t need an additional variable. (Proof: Initially, j = m+ 1 and
count= 0, and we always increment j and count together.)

5

CS/ECE 374 A Homework 5 (due October 3) Fall 2023

MergeAndCount2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else if i > m

B[k]← A[j]; j← j + 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else

B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

MergeAndCount2 still runs inO(n) time, so the overall running time is stillO(n log n),
as required. ■

Rubric: 10 points = 2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and count)
+ 2 for time analysis. This is neither the only way to correctly describe this algorithm nor the only
correct O(n log n)-time algorithm. No proof of correctness is required.

Max 3 points for a correct O(n2)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that algo-
rithm performs—not how the algorithm works, but the relationship between its input and its output.
Each English description is worth 25% of the credit for that algorithm (rounding to the nearest
half-point). For example, the CountRedBlue algorithm is worth 4 points (“conquer”); the English
description alone (“For each blue element Q[i] of the now-sorted array Q[1 .. n], count the number of
smaller red elements Q[j].”) is worth 1 point.

6

