
CS/ECE 374 A = Fall 2023
9 “Homework” 12 :
“Due” Monday, December 4, 2023

This homework is not for submission. However, we are planning to ask a few
(true/false, multiple-choice, or short-answer) questions about undecidability on
the final exam, so we still strongly recommend treating these questions as regular
homework. Solutions will be released next Monday.

1. Let 〈M〉 denote the encoding of a Turing machine M (or if you prefer, the Python source
code for the executable code M). Recall that wR denotes the reversal of string w. Prove
that the following language is undecidable.

SelfRevAccept :=
�

〈M〉
�

� M accepts the string 〈M〉R
	

Note that Rice’s theorem does not apply to this language.

2. Let M be a Turing machine, let w be a string, and let s be an integer. We say that M
accepts w in space s if, given w as input, M accesses at most the first s cells on its tape
and eventually accepts. (If you prefer to think in terms of programs instead of Turing
machines, “space” is how much memory your program needs to run correctly.)

Prove that the following language is undecidable:

SomeSquareSpace=
�

〈M〉
�

� M accepts at least one string w in space |w|2
	

Note that Rice’s theorem does not apply to this language.

[Hint: The only thing you actually need to know about Turing machines for this
problem is that they consume a resource called “space”.]

3. Prove that the following language is undecidable:

Picky=
�

〈M〉
�

�

�

�

M accepts at least one input string
and M rejects at least one input string

�

Note that Rice’s theorem does not apply to this language.

CS/ECE 374 A “Homework” 12 (“due” December 4) Fall 2023

Solved Problem

4. Consider the language SometimesHalt = {〈M〉 | M halts on at least one input string}.
Note that 〈M〉 ∈ SometimesHalt does not imply that M accepts any strings; it is enough
that M halts on (and possibly rejects) some string.

(a) Prove that SometimesHalt is undecidable.

Solution (Rice): Let L be the family of all non-empty languages. Let N be any
Turing machine that never halts, so Halt(N) = ∅ ̸∈ L . Let Y be any Turing
machine that always halts, so Halt(Y) = Σ∗ ∈ L . Rice’s Halting Theorem
immediately implies that SometimesHalt= HaltIn(L) is undecidable. ■

Solution (closure): Let Encodings be the language of all Turing machine
encodings (for some fixed universal Turing machine); this language is decid-
able. We immediately have Encodings = NeverHalt ∪ SometimesHalt, or
equivalently, NeverHalt= Encodings \ SometimesHalt.

The lectures notes include a proof that NeverHalt is undecidable. On
the other hand, the existence of a universal Turing machine implies that
Encodings is decidable. So Corollary 3(d) in the undecidability notes im-
plies that SometimesHalt is undecidable. ■

Solution (reduction from Halt): We can reduce the standard halting problem
to SometimesHalt as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
(ignore x)
run M on input w

return DecideSometimesHalt(〈M ′〉)

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ halts on every input string x .
So DecideSometimesHalt must accept the encoding 〈M ′〉.
We conclude that DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
So DecideSometimesHalt must reject the encoding 〈M ′〉.
We conclude that DecideHalt correctly rejects the encoding 〈M , w〉.

■

2

