CS/ECE 374 A $\&$ Fall 2023

ค Homework 11 ~
Due Tuesday, November 28, 2023 at 9pm
This is the last graded homework before the final exam.

1. A balloon of size ℓ is an undirected graph consisting of a (simple) cycle of length ℓ and a (simple) path of length ℓ, where one endpoint of the path lies on the cycle, and otherwise the cycle and the path are disjoint. Every balloon of size ℓ has exactly 2ℓ vertices and 2ℓ edges. For example, the 4×4 grid graph shown below contains a balloon subgraph of size 8.

Prove that it is NP-hard to find the size of the the largest balloon subgraph of a given undirected graph.
2. Recall that a 3 -coloring of a graph assigns each vertex one of three colors, say red, yellow, and blue. A 3 -coloring is proper if every edge has endpoints with different colors. The 3Color problem asks, given an arbitrary undirected graph G, whether G has a proper 3-coloring.

Call a 3-coloring of a graph G slightly improper if each vertex has at most one neighbor with the same color. The SlightlyImproper3Color problem asks, given an arbitrary undirected graph G, whether G has a slightly improper 3-coloring.

(a) Consider the following attempt to prove that SlightlyImproper3Color is NP-hard, using a reduction from 3Color.

Non-solution: We reduce from 3Color. Given an arbitrary input graph G, we construct a new graph H by attaching a clique of 4 vertices to every vertex of G. Specifically, for each vertex v in G, the graph H contains three new vertices v_{1}, v_{2}, v_{3}, along with edges $v v_{1}, v v_{2}, v v_{3}, v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}$. I claim that

```
\(G\) has a proper 3-coloring
if and only if
\(H\) has a slightly improper 3 -coloring.
```

\Longrightarrow Suppose G has a proper 3-coloring, using the colors red, yellow, and blue. Extend this color assignment to the vertices of H by coloring each vertex v_{1} red, each vertex v_{2} yellow, and each vertex v_{3} blue. With this assignment, each vertex of H has at most one neighbor with the same color. Specifically, each vertex of G has the same color as one of the vertices in its gadget, and the other two vertices in v 's gadget have no neighbors with the same color.
Now suppose H has a slightly improper 3-coloring. Then G must have a proper 3-coloring because. . . um. . .

Describe a graph G that does not have a proper 3-coloring, such that the graph H constructed by this reduction does have a slightly improper 3 -coloring.
(b) Describe a small graph X with the following property: In every slightly improper 3 -coloring of X, every vertex of X has exactly one neighbor with the same color.
(c) Describe a correct polynomial-time reduction from 3Color to SlightlyImproper3Color. [Hint: Use your graph from part (b) as a gadget.] This reduction will prove that SlightlyImproper3Color is indeed NP-hard.

Solved Problem

3. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a double-Hamiltonian tour.

This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow g \rightarrow e \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow e \rightarrow a$.
Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a small gadget to every vertex of G. Specifically, for each vertex v, we add two vertices v^{\sharp} and v^{b}, along with three edges $v v^{b}, v v^{\sharp}$, and $v^{b} v^{\sharp}$.

A vertex in G and the corresponding vertex gadget in H.
Now I claim that
G has a Hamiltonian cycle
if and only if
H has a double-Hamiltonian tour.
\Longrightarrow Suppose G contains a Hamiltonian cycle $C=v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n} \rightarrow v_{1}$. We can construct a double-Hamiltonian tour of H by replacing each vertex v_{i} in C with the following walk:

$$
\cdots \rightarrow v_{i} \rightarrow v_{i}^{b} \rightarrow v_{i}^{\sharp} \rightarrow v_{i}^{b} \rightarrow v_{i}^{\sharp} \rightarrow v_{i} \rightarrow \cdots
$$

\Longleftarrow Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the original graph G; the tour D must visit v exactly twice. Those two visits split D into two closed walks, each of which visits v exactly once. Any walk from v^{b} or v^{\sharp} to any other vertex in H must pass through v. Thus, one of the two closed walks visits only the vertices v, v^{b}, and v^{\sharp}. Thus, if we remove the vertices and edges in $H \backslash G$ from D, we obtain a closed walk in G that visits every vertex in G exactly once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial time by brute force.

With more effort, we can construct a graph H that contains a double-Hamiltonian tour that traverses each edge of H at most once if and only if G contains a Hamiltonian
cycle. For each vertex v in G we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.

A vertex in G, and the corresponding modified vertex gadget in H.

Rubric: 10 points, standard polynomial-time reduction rubric. This is not the only correct solution.

Non-solution (self-loops): We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a self-loop every vertex of G. Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

Now I claim that
G has a Hamiltonian cycle
if and only if
H has a double-Hamiltonian tour.
\Longrightarrow Suppose G has a Hamiltonian cycle $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n} \rightarrow v_{1}$. We can construct a double-Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and self-loops: $v_{1} \rightarrow v_{1} \rightarrow v_{2} \rightarrow v_{2} \rightarrow v_{3} \rightarrow \cdots \rightarrow v_{n} \rightarrow v_{n} \rightarrow v_{1}$.
$\#$ Um...
Unfortunately, if H has a double-Hamiltonian tour, we cannot conclude that G has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses any self-loops. The graph G shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?
3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices in G that have no edges among them?

MaxCliquE: Given an undirected graph G, what is the size of the largest complete subgraph of G ?
MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices that touch every edge in G ?

MinSetCover: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set S, what is the size of the smallest subcollection whose union is S ?

MinHittingSet: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set S, what is the size of the smallest subset of S that intersects every subset S_{i} ?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

ChromaticNumber: Given an undirected graph G, what is the minimum number of colors required to color its vertices, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every vertex exactly once?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that visits every vertex exactly once?

TravelingSalesman: Given a graph G (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in G ?

LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in G ?

SteinerTree: Given an undirected graph G with some of the vertices marked, what is the minimum number of edges in a subtree of G that contains every marked vertex?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements sum to k ?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?
3Partition: Given a set X of $3 n$ positive integers, can X be partitioned into n three-element subsets, all with the same sum?

IntegerLinearProgramming: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^{n}$ and $c \in Z^{d}$, compute $\max \left\{c \cdot x \mid A x \leq b, x \geq 0, x \in \mathbb{Z}^{d}\right\}$.
FeasibleilP: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^{n}$, determine whether the set of feasible integer points $\max \left\{x \in \mathbb{Z}^{d} \mid A x \leq b, x \geq 0\right\}$ is empty.

Draughts: Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?

