
CS/ECE 374 A = Fall 2023
9 Homework 1 :

Due Tuesday, August 29, 2023 at 9pm Central Time

• Submit your written solutions electronically to Gradescope as PDF files. Submit
a separate PDF file for each numbered problem. If you plan to typeset your solutions,
you are welcome to use the LATEX solution template on the course web site. If you must
submit scanned handwritten solutions, please use a black pen on blank white paper and a
high-quality scanner app (or an actual scanner).

• Groups of up to three people can submit joint solutions on Gradescope. Exactly one student
in each group should upload the solution and indicate their other group members.

• You may use any source at your disposal—paper, electronic,1 or human—but you must
cite every source that you use,2 you must write everything yourself in your own words,
and you are responsible for any errors in the sources you use.3 See the academic integrity
policies on the course web site for more details.

• Written homework is normally due every Tuesday at 9pm. In addition, guided problem
sets on PrairieLearn are normally due every Monday at 9pm; each student must do these
individually. In particular, Guided Problem Set 1 is due Monday, August 28!

• Both guided problem sets and homework may be submitted up to 24 hours late for 50%
partial credit, or for full credit with an approved extension. See the grading policies on the
course web site for more details.

• Each homework will include at least one fully solved problem, similar to that week’s assigned
problems, together with the rubric we would use to grade this problem if it appeared
in an actual homework or exam. These model solutions show our recommendations for
structure, presentation, and level of detail in your homework solutions. (Obviously, the
actual content of your solutions won’t match the model solutions, because your problems
are different!) Homeworks may also include additional practice problems.

• Standard grading rubrics for many problem types can be found on the course web page.
For example, the problems in this week’s homework will be graded using the standard
induction rubric. (Weak induction makes the baby Jesus cry.)

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

1Yes, including ChatGPT.
2Yes, including ChatGPT.
3Yes, including ChatGPT.



CS/ECE 374 A Homework 1 (due August 29) Fall 2023

1. Consider the following recursively defined function:

stutter(w) :=

(

ϵ if w= ϵ

aa • stutter(x) if w= ax

For example, stutter(MISSISSIPPI) = MMIISSSSIISSSSIIPPPPII.

(a) Prove that |stutter(w)|= 2|w| for every string w.

(b) Prove that stutter(x • y) = stutter(x) • stutter(y) for all strings x and y .

(c) Practice only. Do not submit solutions.
The reversal wR of a string w is defined recursively as follows:

wR :=

(

ϵ if w= ϵ

xR • a if w= ax

For example, MISSIPPIPPIR = IPPIPPISSIM.
Prove that stutter(w)R = stutter(wR) for every string w.

You may freely use any result proved in lecture, in lab, or in the lecture notes. Otherwise
your proofs must be formal and self-contained. In particular, your proofs must invoke the
formal recursive definitions of string length and concatenation (and for part (c), reversal).
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CS/ECE 374 A Homework 1 (due August 29) Fall 2023

2. For each positive integer n, we define two strings pn and vn, respectively called the nth
Piṅgala string and the nth Virahān. ka string. Piṅgala strings are defined by the following
recurrence:

pn =











1 if n= 1

0 if n= 2

pn−2 • pn−1 otherwise

For example:

p7 =
p5

10010

p6

p4

010

p5

10010 .

Virahān. ka strings are defined more indirectly as

vn =

¨

1 if n= 1

grow(vn−1) otherwise

where the string function grow is defined as follows:

grow(w) =











ϵ if w= ϵ

0 · grow(x) if w= 1x

10 • grow(x) if w= 0x

For example:

grow(01010010) = 10 • 0 • 10 • 0 • 10 • 10 • 0 • 10= 1001001010010

Finally, recall that the Fibonacci numbers are defined recursively as follows:

Fn =











0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

(a) Prove that |pn|= Fn for all n≥ 1.

(b) Prove that grow(w • z) = grow(w) • grow(z) for all strings w and z.

(c) Prove that pn = vn for all n≥ 1. [Hint: Careful!]

(d) Practice only. Do not submit solutions.
Prove that |vn|= Fn for all n≥ 1.

As in problem 1, you may freely use any result that proved in lecture, in lab, or in the
lecture notes. Otherwise your proofs must be formal and self-contained. In particular,
your proofs must invoke the formal recursive definitions of the strings pn and vn, the grow
function, and the Fibonacci numbers Fn.
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CS/ECE 374 A Homework 1 (due August 29) Fall 2023

⋆3. Practice only. Do not submit solutions.

For each non-negative integer n, we recursively define two binary trees Pn and Vn, called
the nth Piṅgala tree and the nth Virahān. ka tree, respectively.

• P0 and V0 are empty trees, with no nodes.

• P1 and V1 each consist of a single node.

• For any integer n≥ 2, the tree Pn consists of a root with two subtrees; the left subtree
is a copy of Pn−1, and the right subtree is a copy of Pn−2.

• For any integer n ≥ 2, the tree Ln is obtained from Ln−1 by attaching a new right
child to every leaf and attaching a new left child to every node that has only a right
child.

The following figure shows the recursive construction of these two trees when n= 7.

P7

P5

P6

V7

V6

Recall that the Fibonacci numbers are defined recursively as follows:

Fn =











0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

(a) Prove that the tree Pn has exactly Fn leaves.

(b) Prove that the tree Vn has exactly Fn leaves.
[Hint: You need to prove a stronger result.]

(c) Prove that the trees Pn and Vn are identical, for all n≥ 0.
[Hint: The hardest part of this proof is developing the right language/notation.]

As in problem 1, you may freely use any result that proved in lecture, in lab, or in the
lecture notes. Otherwise your proofs must be formal and self-contained. In particular, your
proofs must invoke the formal recursive definitions of the trees Pn and Vn and the Fibonacci
numbers Fn.
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Solved Problems

3. For any string w ∈ {0,1}∗, let swap(w) denote the string obtained from w by swapping the
first and second symbols, the third and fourth symbols, and so on. For example:

swap(10 11 00 01 10 1) = 01 11 00 10 01 1.

The swap function can be formally defined as follows:

swap(w) :=











ϵ if w= ϵ

w if w= 0 or w= 1

ba • swap(x) if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗

(a) Prove that |swap(w)|= |w| for every string w.

Solution: Let w be an arbitrary string.
Assume |swap(x)|= |x | for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):

• If w= ϵ, then

|swap(w)|= |swap(ϵ)| because w= ϵ

= |ϵ| by definition of swap
= |w| because w= ϵ

• If w= 0 or w= 1, then

|swap(w)|= |w| by definition of swap

• Finally, if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗ , then

|swap(w)|= |swap(abx)| because w= abx

= |ba • swap(x)| by definition of swap
= |ba|+ |swap(x)| because |y • z|= |y|+ |z|
= |ba|+ |x | by the induction hypothesis
= 2+ |x | by definition of | · |
= |ab|+ |x | by definition of | · |
= |ab • x | because |y • z|= |y|+ |z|
= |abx | by definition of •
= |w| because w= abx

In all cases, we conclude that |swap(w)|= |w|. ■

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary for full
credit.
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(b) Prove that swap(swap(w)) = w for every string w.

Solution: Let w be an arbitrary string.
Assume swap(swap(x)) = x for every string x that is shorter than w.
There are three cases to consider (mirroring the definition of swap):

• If w= ϵ, then

swap(swap(w)) = swap(swap(ϵ)) because w= ϵ

= swap(ϵ) by definition of swap
= ϵ by definition of swap
= w because w= ϵ

• If w= 0 or w= 1, then

swap(swap(w)) = swap(w) by definition of swap
= w by definition of swap

• Finally, if w= abx for some a, b ∈ {0,1} and x ∈ {0,1}∗ , then

swap(swap(w)) = swap(swap(abx)) because w= abx

= swap(ba • swap(x)) by definition of swap
= swap(ba • z) where z = swap(x)
= swap(baz) by definition of •
= ab • swap(z) by definition of swap
= ab • swap(swap(x)) because z = swap(x)
= ab • x by the induction hypothesis
= abx by definition of •
= w because w= abx

In all cases, we conclude that swap(swap(w)) = w. ■

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary for full
credit.
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4. The reversal wR of a string w is defined recursively as follows:

wR :=

(

ϵ if w= ϵ

xR • a if w= a · x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA,
RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

Solution: A string w ∈ Σ∗ is a palindrome if and only if either

• w= ϵ, or
• w= a for some symbol a ∈ Σ, or
• w= axa for some symbol a ∈ Σ and some palindrome x ∈ Σ∗.

■

Rubric: 2 points =½ for each base case + 1 for the recursive case. No credit for the rest of the
problem unless this part is correct.

(b) Prove w= wR for every palindrome w (according to your recursive definition).
You may assume the following facts about all strings x , y , and z:

• Reversal reversal: (xR)R = x

• Concatenation reversal: (x • y)R = yR • xR

• Right cancellation: If x • z = y • z, then x = y .

Solution: Let w be an arbitrary palindrome.
Assume that x = xR for every palindrome x such that |x |< |w|.
There are three cases to consider (mirroring the definition of “palindrome”):

• If w= ϵ, then wR = ϵ by definition, so w= wR.
• If w= a for some symbol a ∈ Σ, then wR = a by definition, so w= wR.
• Finally, if w = axa for some symbol a ∈ Σ and some palindrome x ∈ P,

then

wR = (a · x • a)R because w = axa
= (x • a)R • a by definition of reversal
= aR • xR • a by concatenation reversal
= a • xR • a by definition of reversal
= a • x • a by the inductive hypothesis
= w because w = axa

In all three cases, we conclude that w= wR. ■

Rubric: 4 points: standard induction rubric (scaled)

6



CS/ECE 374 A Homework 1 (due August 29) Fall 2023

(c) Prove that every string w such that w = wR is a palindrome (according to your
recursive definition).
Again, you may assume the following facts about all strings x , y , and z:

• Reversal reversal: (xR)R = x

• Concatenation reversal: (x • y)R = yR • xR

• Right cancellation: If x • z = y • z, then x = y .

Solution: Let w be an arbitrary string such that w= wR.
Assume that every string x such that |x |< |w| and x = xR is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):

• If w= ϵ, then w is a palindrome by definition.
• If w= a for some symbol a ∈ Σ, then w is a palindrome by definition.
• Otherwise, we have w= ax for some symbol a and some non-empty string x .

The definition of reversal implies that wR = (ax)R = xRa.
Because x is non-empty, its reversal xR is also non-empty.
Thus, xR = b y for some symbol b and some string y .
It follows that wR = b ya, and therefore w= (wR)R = (b ya)R = a yR b.

〈〈At this point, we need to prove that a = b and that y is a palindrome.〉〉

Our assumption that w= wR implies that b ya = a yR b.
The recursive definition of string equality immediately implies a = b.

Because a = b, we have w= a yRa and wR = a ya.
The recursive definition of string equality implies yRa = ya.
Right cancellation implies yR = y .
The inductive hypothesis now implies that y is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome. ■

Rubric: 4 points: standard induction rubric (scaled).
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5. Let L ⊆ {0,1}∗ be the language defined recursively as follows:

• The empty string ϵ is in L.

• For any string x ∈ L, the strings 0101x and 1010x are also in L.

• For all strings x and y such that x y ∈ L, the strings x00y and x11y are also in L.
(In other words, inserting two consecutive 0s or two consecutive 1s anywhere in a
string in L yields another string in L.)

• These are the only strings in L.

Let EE denote the set of all strings w ∈ {0,1}∗ such that #(0, w) and #(1, w) are both even.

In the following proofs, you may freely use any result proved in lecture, in lab, in the
lecture notes, or earlier in your homework. Otherwise your proofs must be formal and
self-contained; in particular, they must invoke the formal recursive definitions of # and L.

(a) Prove that L ⊆ EE.

Solution: Let w be an arbitrary string in L. We need to prove that #(0, w) and
#(1, w) are both even. Here I will prove only that #(0, w) is even; the proof that
#(1, w) is even is symmetric.

Assume for every string x ∈ L such that |x |< |w| that #(0, x) is even.
There are several cases to consider, mirroring the definition of L.

• Suppose w= ϵ. Then #(0, w) = 0, and 0 is even.
• Suppose w= 0101x or w= 1010x for some string x ∈ L. The definition of #

(applied four times) implies #(0, w) = #(0, x)+2. The inductive hypothesis
implies #(0, x) is even. We conclude that #(0, w) is even.

• Suppose w= x00y for some strings x and y such that x y ∈ L. Then

#(0, w) = #(0, x00y)

= #(0, x) +#(0,00) +#(0, y)

= #(0, x) +#(0, y) +#(0,00)

= #(0, x y) + 2

The induction hypothesis implies #(0, x y) is even. We conclude that
#(0, w) = #(0, x y) + 2 is also even.

• Finally, suppose w= x11y for some strings x and y such that x y ∈ L. Then

#(0, w) = #(0, x11y)

= #(0, x) +#(0,11) +#(0, y)

= #(0, x) +#(0, y)

= #(0, x y)

The induction hypothesis implies #(0, w) = #(0, x y) is even.
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In all cases, we have shown that #(0, w) is even. Symmetric arguments imply
that #(1, w) is even. We conclude that w ∈ EE. ■

Rubric: 5 points: standard induction rubric (scaled). Yes, this is enough detail for#(1, w). If
explicit proofs are given for both#(0, w) and#(1, w), grade them independently, each for 2½
points.

(b) Prove that EE ⊆ L.

Solution: Let w be an arbitrary string in EE. We need to prove that w ∈ L.
Assume that for every string x ∈ EE such that |x |< |w|, we have x ∈ L.
There are four (overlapping) cases to consider, depending on the first four
symbols in w.

• Suppose |w| < 4. Then w must be one of the strings ϵ, 00, or 11; brute
force inspection implies that every other string of length at most 3 (0, 1, 01,
10, 000, 001, 010, 011, 100, 101, 110, 111) has an odd number of 0s or an
odd number of 1s (or both). All three strings ϵ, 00, and 11 are in L. In all
other cases, we can assume that |w| ≥ 4, so the “first four symbols of w” are
well-defined.

• Suppose the first four symbols of w are 0000 or 0001 or 0010 or 0011 or 0100
or 1000 or 1001 or 1100. Then w= x00y for some (possibly empty) strings
x and y. Arguments in part (a) imply that #(0, x y) = #(0, w) − 2 and
#(1, x y) = #(1, w) are both even. Thus x y ∈ EE by definition of EE. So
the induction hypothesis implies x y ∈ L. We conclude that w= x00y ∈ L
by definition of L.

• Suppose the first four symbols of w are 0011 or 0110 or 0111 or 1011 or
1100 or 1101 or 1110 or 1111.) After swapping 0s and 1s, the argument in
the previous case implies that w ∈ L.

• Finally, suppose the first four symbols of w are 0101 or 1010; in other words,
suppose w= 0101x or w= 1010x for some (possibly empty) string x . Then
#(0, x) = #(0, w)− 2 and #(1, x) = #(1, w)− 2 are both even, so x ∈ EE
by definition. The induction hypothesis implies x ∈ L. We conclude that
w ∈ L by definition of L.

Each of the 16 possible choices for the first four symbols of w is considered in at
least one of the last three cases.
In all cases, we conclude that w ∈ L. ■

Rubric: 5 points: standard induction rubric (scaled). This is not the only correct proof. This is
not the only correct way to express this particular case analysis.
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