1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

(a) A depth-first search tree rooted at vertex a.
(b) A breadth-first tree rooted at vertex c.
(c) The strong components of G. (Circle each strong component.)
(d) Draw the strong-component graph of G.

2. Suppose we are given an n-digit integer X. Repeatedly remove one digit from either end of X (your choice) until no digits are left. The **square-depth** of X is the maximum number of perfect squares that you can see during this process. For example, the number 32492 has square-depth 3, by the following sequence of removals:

$32492 \rightarrow 3249 \rightarrow 324 \rightarrow 24 \rightarrow 4 \rightarrow \varepsilon$.

Describe and analyze an algorithm to compute the square-depth of a given integer X, represented as an array $X[1..n]$ of n decimal digits. Assume you have access to a subroutine IsSquare that determines whether a given k-digit number (represented by an array of digits) is a perfect square in $O(k^2)$ time.

3. Suppose you are given a directed graph $G = (V,E)$, each of whose edges are colored red, green, or blue. Edges in G do not have weights, and G is not necessarily a dag. A **rainbow walk** is a walk in G that does **not** contain two consecutive edges with the same color.

Describe and analyze an algorithm to find all vertices in G that are reachable from a given vertex s through a rainbow walk.
4. Suppose you are given k sorted arrays $A_1[1..n], A_2[1..n], \ldots, A_k[1..n]$, all with the same length n. Describe an algorithm to merge the given arrays into a single sorted array. Analyze the running time of your algorithm as a function of n and k.

5. After moving to a new city, you decide to walk from your home to your new office. To get a good daily workout, you want to reach the highest possible altitude during your walk (to maximize exercise), while keeping the total length of your walk below some threshold (to get to your office on time). Describe and analyze an algorithm to compute the best possible walking route.

Your input consists of an undirected graph G, where each vertex v has a height $h(v)$ and each edge e has a positive length $\ell(e)$, along with a start vertex s, a target vertex t, and a maximum length L. Your algorithm should return the maximum height reachable by a walk from s to t in G, whose total length is at most L.