You have 120 minutes to answer five questions.

Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. Let compress $\theta \mathrm{s}(w)$ be a function that takes a string w as input, and returns the string formed by compressing every run of 0 s in w by half. Specifically, every run of $2 n 0$ s is compressed to length n, and every run of $2 n+10$ s is compressed to length $n+1$. For example:

$$
\begin{aligned}
\text { compress } 0 \mathrm{~s}(\underline{00000110001)} & =\underline{00011001} \\
\operatorname{compress} \theta \mathrm{~s}(11 \underline{00001 \underline{\theta})} & =11 \underline{001 \underline{\theta}} \\
\operatorname{compress} 0 \mathrm{~s}(11111) & =11111
\end{aligned}
$$

Let L be an arbitrary regular language.
(a) Prove that $\left\{w \in \Sigma^{*} \mid \operatorname{compress} \theta \mathrm{s}(w) \in L\right\}$ is regular.
(b) Prove that $\{$ compress $0 \mathrm{~s}(w) \mid w \in L\}$ is regular.
2. For each of the following languages L over the alphabet $\Sigma=\{0,1\}$, describe a DFA that accepts L and give a regular expression that represents L. You do not need to justify your answers.
(a) All strings in which at least one run has length divisible by 3 .
(b) All strings that do not contain either 100 or 011 as a substring.
3. Consider the following recursive function Bond, which doubles the length of any run of 0s in its input string.

$$
\operatorname{Bond}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ 00 \cdot \operatorname{Bond}(x) & \text { if } w=0 \cdot x \text { for some string } x \\ 1 \cdot \operatorname{Bond}(x) & \text { if } w=1 \cdot x \text { for some string } x\end{cases}
$$

(a) Prove that $|\operatorname{Bond}(w)| \geq|w|$ for all strings w.
(b) Prove that $\operatorname{Bond}(x \cdot y)=\operatorname{Bond}(x) \cdot \operatorname{Bond}(y)$ for all strings x and y.

As usual, you can assume any result proved in class, in the lecture notes, in labs, or in homework solutions.
4. Let L be the language $\left\{0^{a} 1^{b} 0^{c} \mid a=b\right.$ or $a=c$ or $\left.b=c\right\}$
(a) Prove that L is not a regular language.
(b) Describe a context-free grammar for L.
5. For each statement below, check "True" if the statement is always true and check "False" otherwise, and give a brief (one short sentence) explanation of your answer. Read these statements very carefully—small details matter!
(a) If $2+2=5$, then zero is odd.
(b) $\left\{0^{n} 1 \mid n>0\right\}$ is the only infinite fooling set for the language $\left\{0^{n} 10^{n} \mid n>0\right\}$.
(c) $\left\{0^{n} 10^{n} \mid n>0\right\}$ is a context-free language.
(d) The context-free grammar $S \rightarrow 00 S|S 11| 01$ generates the language $0^{n} 1^{n}$.
(e) Every regular language is recognized by a DFA with exactly one accepting state.
(f) Any language that can be decided by an NFA with ε-transitions can also be decided by an NFA without ε-transitions.
(g) If L is a regular language over the alphabet $\{0,1\}$, then $\left\{x y^{C} \mid x, y \in L\right\}$ is also regular.
(h) If L is a regular language over the alphabet $\{0,1\}$, then $\left\{w w^{C} \mid w \in L\right\}$ is also regular.
(i) The regular expression $(00+11)^{*}$ represents the language of all strings over $\{0,1\}$ of even length.
(j) Let L_{1}, L_{2} be two regular languages. The language $\left(L_{1}+L_{2}\right)^{*}$ is also regular.

