
CS/ECE 374 A = Fall 2023
9 Midterm 1 Study Questions :

This is a “core dump” of potential questions for Midterm 1. This should give you a good idea
of the types of questions that we will ask on the exam—in particular, there will be a series of
True/False/explain questions—but the actual exam questions may or may not appear in this
handout. This list intentionally includes a few questions that are too long or difficult for exam
conditions; most of these are indicated with a ∗star.

Questions from Jeff’s past exams are labeled with the semester they were used—〈〈S14〉〉 or
〈〈F19〉〉, for example. Questions from this semester’s homework (either written or on PrairieLearn)
are labeled 〈〈HW〉〉. Questions from this semester’s labs are labeled 〈〈Lab〉〉. Some unflagged
questions may have been used in exams by other instructors. Many of these problems appear as
auto-graded practice exercises on PrairieLearn.

9 How to Use These Problems :

Solving every problem in this handout is not the best way to study for the exam. Memorizing the
solutions to every problem in this handout is the absolute worst way to study for the exam.

Instead we recommend sampling the problems. Choose one or two problems at random from
each section and try to solve them from scratch under exam conditions—by yourself, in a quiet
room, with a 30-minute timer, without your notes, without the internet, and if possible, even
without your cheat sheet. If you can comfortably solve a few problems in some section under
exam conditions, you’re ready for that type of problem on the exam. Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in office
hours, on Discord, or on Ed Discussion) and/or looking up old solutions can be extremely helpful,
but only after you have (1) made a good-faith effort to solve the problem on your own, and (2)
you have either a candidate solution or some idea about where you’re getting stuck.

If you find yourself getting stuck on a particular type of problem, try to figure out why you’re
stuck. Do you understand the problem statement? Are you stuck on choosing the right high-level
approach? Are you stuck on the technical details? Are you struggling to express your ideas
clearly? Are you confused about notation?

Similarly, if past feedback suggests that your solutions to some problem types are incorrect
or incomplete, try to figure out what you missed. The grading rubrics can be incredibly useful
here. For induction proofs: Are you sure you have the right induction hypothesis? Are your cases
obviously exhaustive? For regular expressions, DFAs, NFAs, and context-free grammars: Is your
solution both exclusive and exhaustive? Did you try both positive and negative examples? Both
short and long examples? For fooling sets: Are you imposing enough structure? Are x and y
really arbitrary strings from F? For language transformations: Are you transforming in the right
direction? Are you using non-determinism correctly? Do you understand the formal notation?

Remember that your goal is notmerely to “understand”—or worse, to remember—the solution
to any particular problem, but to become more comfortable with solving each type of problem on
your own. “Understanding” is a seductive trap; aim for mastery. If you can identify specific
steps that you find problematic, read more about those steps, focus your practice on those steps,
and look for helpful information about those steps to write on your cheat sheet. Then work on the
next problem!
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Induction on Strings

Give complete, formal inductive proofs for the following claims. Your proofs must reply on the
formal recursive definitions of the relevant string functions, not on intuition. Recall that the
concatenation • and length | · | functions are formally defined as follows:

w • y :=

¨

y if w= ϵ

a · (x • y) if w= ax for some a ∈ Σ and x ∈ Σ∗

|w| :=

¨

0 if w= ϵ

1+ |x | if w= ax for some a ∈ Σ and x ∈ Σ∗

1.1 The reversal wR of a string w is defined recursively as follows:

wR :=

(

ϵ if w= ϵ

xR • a if w= ax for some a ∈ Σ and x ∈ Σ∗

(a) Prove that (w • x)R = xR • wR for all strings w and x . 〈〈Lab〉〉

(b) Prove that (wR)R = w for every string w. 〈〈Lab〉〉

(c) Prove that |w|= |wR| for every string w. 〈〈Lab〉〉

1.2 Let #(a, w) denote the number of times symbol a appears in string w. For example,
#(X,WTF374) = 0 and #(0,000010101010010100) = 12.

(a) Give a formal recursive definition of #(a, w).〈〈Lab〉〉

(b) Prove that #(a, w • z) = #(a, w) +#(a, z) for all symbols a and all strings w and z.
〈〈Lab〉〉

(c) Prove that #(a, wR) = #(a, w) for all symbols a and all strings w, where wr denotes the
reversal of w. 〈〈Lab〉〉

1.3 For any string w and any non-negative integer n, let wn denote the string obtained by
concatenating n copies of w; more formally, define

wn :=

(

ϵ if n= 0

w • wn−1 otherwise

For example, (BLAH)5 = BLAHBLAHBLAHBLAHBLAH and ϵ374 = ϵ.

(a) Prove that wm • wn = wm+n for every string w and all non-negative integers n and m.

(b) Prove that (wm)n = wmn for every string w and all non-negative integers n and m.

(c) Prove that |wn|= n|w| for every string w and every integer n≥ 0.

(d) Prove that (wn)R = (wR)n for every string w and every integer n≥ 0.
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1.4 Consider the following pair of mutually recursive functions:

evens(w) :=

(

ϵ if w= ϵ

odds(x) if w= ax
odds(w) :=

(

ϵ if w= ϵ

a · evens(x) if w= ax

For example, evens(0001101) = 010 and odds(0001101) = 0011.

(a) Prove the following identity for all strings w and x:

evens(w • x) =

(

evens(w) • evens(x) if |w| is even,

evens(w) • odds(x) if |w| is odd.

(b) State and prove a similar identity for odds(w • x).

(c) Prove the following identity for all strings w:

evens(wR) =

(

(evens(w))R if |w| is odd,

(odds(w))R if |w| is even.

(d) Prove that |w|= |evens(w)|+ |odds(w)| for every string w.

1.5 The complement w c of a string w ∈ {0,1}∗ is obtained from w by replacing every 0 in w with
a 1 and vice versa. The complement function can be defined recursively as follows:

wc :=











ϵ if w= ϵ

1 · x c if w= 0x

0 · x c if w= 1x

(a) Prove that |w|= |wc| for every string w.

(b) Prove that (x • y)c = x c • y c for all strings x and y .

(c) Prove that #(1, w) = #(0, wc) for every string w.

1.6 Consider the following recursively defined function:

stutter(w) :=

(

ϵ if w= ϵ

aa • stutter(x) if w= ax

For example, stutter(MISSISSIPPI) = MMIISSSSIISSSSIIPPPPII.

(a) Prove that |stutter(w)|= 2|w| for every string w. 〈〈HW〉〉

(b) Prove that evens(stutter(w)) = w for every string w.

(c) Prove that odds(stutter(w)) = w for every string w.

(d) Prove that w is a palindrome if and only if stutter(w) is a palindrome, for every string w.
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1.7 Consider the following recursive function:

shuffle(w, z) :=

¨

z if w= ϵ

a · shuffle(z, x) if w= ax

For example, shuffle(0011,0101) = 00011011.

(a) Prove that |shuffle(x , y)|= |x |+ |y| for all strings x and y .

(b) Prove that shuffle(w, w) = stutter(w) for every string w.

(c) Prove that shuffle(odds(w), evens(w)) = w for every string w.

(d) Prove that evens(shuffle(w, z)) = z for all strings w and z such that |w|= |z|.
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Regular expressions

For each of the following languages over the alphabet Σ = {0,1}, give an equivalent regular
expression, and briefly argue why your expression is correct. (On exams, we will not ask for
justifications, but you should still justify your expressions in your head.)

2.1 Every string of length at most 3. [Hint: Don’t try to be clever.]

2.2 All strings except 010. 〈〈Lab〉〉

2.3 All strings that end with the suffix 010.

2.4 All strings that do not start with the prefix 010.

2.5 All strings that contain the substring 010. 〈〈Lab〉〉

2.6 All strings that do not contain the substring 010.

2.7 All strings that contain the subsequence 010.

2.8 All strings that do not contain the subsequence 010.

2.9 All strings containing the substring 10 or the substring 01.

2.10 All strings containing either the substring 10 or the substring 01, but not both. 〈〈F16〉〉

2.11 All strings that do not contain either 001 or 110 as a substring. 〈〈F19〉〉

2.12 All strings containing the subsequence 10 or the subsequence 01 (or possibly both).

2.13 All strings containing the subsequence 10 or the subsequence 01, but not both.

2.14 All strings containing at least two 1s and at least one 0. 〈〈Lab〉〉

2.15 All strings containing at least two 1s or at least one 0 (or possibly both).

2.16 All strings containing at least two 1s or at least one 0, but not both.

2.17 All strings in which every run of consecutive 0s has even length. 〈〈S21〉〉

2.18 All strings in which every run of consecutive 0s has even length and every run of consecutive
1s has odd length. 〈〈F14〉〉

2.19 All strings whose length is divisible by 3.

2.20 All strings in which the number of 1s is divisible by 3.

2.21 All strings in 0∗1∗ whose length is divisible by 3. 〈〈S14〉〉

2.22 All strings in 0∗10∗ whose length is divisible by 3. 〈〈S18〉〉

2.23 All strings in 0∗1∗0∗ whose length is even. 〈〈S18〉〉

2.24 {0nw1n | n> 1 and q ∈ Σ∗} 〈〈S18〉〉
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Direct DFA construction

Draw or formally describe a DFA that recognizes each of the following languages. Don’t forget to
describe the states of your DFA in English. Unless otherwise specified, all languages are over the
alphabet Σ= {0,1}.

2.1 The language {LONG,LUG,LEGO,LEG,LUG,LOG,LINGO} .

2.2 The language MOO∗ + MEOO∗W

2.3 Every string of length at most 3.

2.4 All strings except 010. 〈〈Lab〉〉

2.5 All strings that end with the suffix 010.

2.6 All strings that do not start with the prefix 010.

2.7 All strings that contain the substring 010. 〈〈Lab〉〉

2.8 All strings that do not contain the substring 010. 〈〈Lab〉〉

2.9 All strings that contain the subsequence 010.

2.10 All strings containing the substring 10 or the substring 01.

2.11 All strings containing either the substring 10 or the substring 01, but not both. 〈〈F16〉〉

2.12 All strings that do not contain either 001 or 110 as a substring. 〈〈F19〉〉

2.13 All strings containing the subsequence 10 or the subsequence 01 (or possibly both).

2.14 All strings containing at least two 1s and at least one 0. 〈〈Lab〉〉

2.15 All strings containing at least two 1s or at least one 0, but not both.

2.16 All strings in which the number of 0s is even or the number of 1s is not divisible by 3.

2.17 All strings in which every run of consecutive 0s has even length. 〈〈S21〉〉

2.18 All strings in which every run of consecutive 0s has even length and every run of consecutive
1s has odd length. 〈〈F14〉〉

2.19 All strings that end with 01 and that have odd length 〈〈S21〉〉

2.20 All strings in which the number of 1s is divisible by 3.

2.21 All strings that represent an integer divisible by 3 in binary.

2.22 All strings that represent an integer divisible by 5 in base 7.

2.23 All strings in 0∗1∗ whose length is divisible by 3. 〈〈S14〉〉

2.24 All strings in 0∗10∗ whose length is divisible by 3. 〈〈S18〉〉

2.25 All strings in 0∗1∗0∗ whose length is even. 〈〈S18〉〉

2.26 {0nw1n | n> 1 and q ∈ Σ∗} 〈〈S18〉〉
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Fooling sets

Prove that each of the following languages is not regular. Unless specified otherwise, all languages
are over the alphabet Σ= {0,1}.

4.1 All strings with more 0s than 1s. 〈〈S14〉〉

4.2 All strings with exactly twice as many 0s as 1s.

4.3 All strings with at least twice as many 0s as 1s.

4.4
�

02n �
� n≥ 0
	

〈〈Lab〉〉

4.5
�

03n �
� n≥ 0
	

〈〈S21〉〉

4.6
�

0Fn
�

� n≥ 0
	

, where Fn is the nth Fibonacci number, defined recursively as follows:

Fn :=











0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

[Hint: If Fi + F j is a Fibonacci number, then either i = j ± 1 or min{i, j} ≤ 2.]

4.7
�

0n2 �
� n≥ 0
	

〈〈Lab〉〉

4.8
�

0n3 �
� n≥ 0
	

4.9 {0m1n | m ̸= 2n} 〈〈Lab〉〉

4.10
�

0i1 j0k
�

� 2i = k or i = 2k
	

〈〈S18〉〉

4.11
�

0i1 j0k
�

� i + j = 2k
	

〈〈F19〉〉

4.12
�

0i1 j0k
�

� k > 0 and j mod k = 0 and i mod k = 0
	

〈〈F21〉〉

4.13 {0m1n | n> 0 and m= nn} 〈〈F21〉〉

4.14
�

(01)n(10)n
�

� n≥ 0
	

4.15
�

(01)m(10)n
�

� n≥ m≥ 0
	

4.16
�

x#y
�

� x , y ∈ {0,1}∗ and #(0, x) = #(1, y)
	

4.17
�

x x c
�

� x ∈ {0,1}∗
	

, where x c is the bitwise complement of x , obtained by replacing every 0

in x with a 1 and vice versa. For example, 0001101c = 1110010.

4.18 Properly balanced strings of parentheses, described by the context-free grammar S → ϵ |
SS | (S). 〈〈Lab〉〉

4.19 Palindromes whose length is divisible by 3. 〈〈Lab〉〉

4.20 Strings in which at least two runs of consecutive 0s have the same length.

4.21
�

w#x#y
�

� w, x , y ∈ Σ∗ and w, x , y are not all equal
	

7



CS/ECE 374 A Midterm 1 Study Questions Fall 2023

Regular or Not?

For each of the following languages, either prove that the language is regular (for example, by
describing a DFA, NFA, or regular expression), or prove that the language is not regular (for
example, using a fooling set argument). Unless otherwise specified, all languages are over the
alphabet Σ= {0,1}. Read the language descriptions very carefully.

5.1 The set of all strings in {0,1}∗ in which the substrings 01 and 10 appear the same number
of times. (For example, the substrings 01 and 01 each appear three times in the string
1100001101101.) 〈〈F14,HW〉〉

5.2 The set of all strings in {0,1}∗ in which the substrings 00 and 11 appear the same number
of times. (For example, the substrings 00 and 11 each appear three times in the string
1100001101101.) 〈〈F14,HW〉〉

5.3
�

www
�

� w ∈ Σ∗
	

〈〈F14〉〉

5.4
�

wxw
�

� w, x ∈ Σ∗
	

〈〈F14〉〉

5.5 All strings such that in every prefix, the number of 0s is greater than the number of 1s.

5.6 All strings such that in every non-empty prefix, the number of 0s is greater than the number
of 1s.

5.7
�

0m1n
�

� 0≤ m− n≤ 374
	

5.8
�

0m1n
�

� 0≤ m+ n≤ 374
	

5.9 The language generated by the following context-free grammar:

S→ 0A1 | ϵ
A→ 1S0 | ϵ

5.10 The language generated by the context-free grammar S→ 0S1 | 1S0 | ϵ

5.11
�

0i1 j0k
�

� k = i + j
	

〈〈F21〉〉

5.12
�

0i1 j0k
�

� k ≡ i + j (mod 2)
	

〈〈F21,HW〉〉

5.13
�

w#x
�

� w, x ∈ {0,1}∗ and w is a substring of x
	

5.14
�

w#x
�

� w, x ∈ {0,1}∗ and w is a proper substring of x
	

5.15 {x y | x is a palindrome and y is a palindrome} 〈〈F19〉〉

5.16 {x y | x is not a palindrome} 〈〈F19〉〉

5.17 {x y | x is a palindrome and |x |> 1} 〈〈F19〉〉

5.18
�

x y
�

� #(0, x) = #(1, y) and #(1, x) = #(0, y)
	

5.19
�

x y
�

� #(0, x) = #(1, y) or #(1, x) = #(0, y)
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Product/Subset Constructions

For each of the following languages L over the alphabet {0,1}, formally describe a DFA M =
(Q, s, A,δ) that recognizes L. Do not attempt to draw the DFA. Do not use the phrase “product
construction”. Instead, give a complete, precise, and self-contained description of the state set Q,
the start state s, the accepting state A, and the transition function δ.

6.1 〈〈S14〉〉 All strings that satisfy all of the following conditions:

(a) the number of 0s is even

(b) the number of 1s is divisible by 3

(c) the total length is divisible by 5

6.2 All strings that satisfy at least one of the following conditions: . . .

6.3 All strings that satisfy exactly one of the following conditions: . . .

6.4 All strings that satisfy exactly two of the following conditions: . . .

6.5 All strings that satisfy an odd number of of the following conditions: . . .

6.6 All strings w such that (#(0, w)mod 3) + (#(1, w)mod 3) is odd.

• Other possible conditions:

(a) The number of 0s in w is odd.

(b) The number of 1s in w is not divisible by 5.

(c) The length |w| is divisible by 7.

(d) The binary value of w is divisible by 7.

(e) w represents a number divisible by 5 in base 7.

(f) w contains the substring 00

(g) w does not contain the substring 11

(h) ww does not contain the substring 101
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Regular Language Transformations

Let L be an arbitrary regular language over the alphabet Σ = {0,1}. Prove that each of the
following languages is regular.

7.0 L∗

7.1 All strings in L whose length is divisible by 3.

7.2 OneInFront(L) := {1x | x ∈ L}

7.3 MissingFirstOne(L) := {w ∈ Σ∗ | 1w ∈ L}

7.4 MissingOneOne(L) := {x y | x1y ∈ L} 〈〈Lab〉〉

7.5 Prefixes(L) := {x | x y ∈ L for some y ∈ Σ∗}

7.6 Suffixes(L) := {y | x y ∈ L for some x ∈ Σ∗} 〈〈F16〉〉

7.7 Evens(L) := {evens(w) | w ∈ L}, where the functions evens and odds are recursively defined
as follows:

evens(w) :=

¨

ϵ if w= ϵ

odds(x) if w= ax
odds(w) :=

¨

ϵ if w= ϵ

a · evens(x) if w= ax

For example, evens(0001101) = 010 and odds(0001101) = 0011. 〈〈F14, Lab〉〉

7.8 Unevens(L) := {w | evens(w) ∈ L}, where the functions evens and odds are recursively
defined as above. 〈〈F14, Lab〉〉

7.9 AddParity(L) = {addparity(w) | w ∈ L}, where 〈〈S18〉〉

addparity(w) =

¨

0w if #(1, w) is even
1w if #(1, w) is odd

7.10 StripFinal0s(L) = {w | w0n ∈ L for some n≥ 0}. Less formally, StripFinal0s(L) is the set
of all strings obtained by removing any number of final 0s from strings in L. 〈〈S18〉〉

7.11 Obliviate(L) := {obliviate(w) | w ∈ L}, where obliviate(w) = 0#(0,w) is the string obtained
from w by deleting every 1. 〈〈F19〉〉

7.12 UnObliviate(L) := {w ∈ Σ∗ | obliviate(w) ∈ L}, where obliviate(w) = 0#(0,w) is the string
obtained from w by deleting every 1. 〈〈F19〉〉

7.13 SameSlash(w) = {sameslash(w) | w ∈ L}, where sameslash(w) is the string in {0,1,/}
obtained from w by inserting a new symbol / between any two consecutive appearances of
the same symbol. 〈〈F19〉〉

7.14 DiffSlash(w) = {diffslash(w) | w ∈ L}, where diffslash(w) is the string in {0,1,/} obtained
from w by inserting a new symbol / between any two consecutive symbols that are not equal.
〈〈F19〉〉
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Context-Free Grammars

Construct context-free grammars for each of the following languages, and give a brief explanation
of how your grammar works, including the language of each non-terminal. Unless specified
otherwise, all languages are over the alphabet {0,1}. We explicitly do not want a formal proof of
correctness.

8.1 All strings in {0,1}∗ whose length is divisible by 5.

8.2 All strings in which the substrings 01 and 10 appear the same number of times.

8.3 {0n12n | n≥ 0} 〈〈Lab〉〉

8.4 {0m1n | n ̸= 2m} 〈〈Lab〉〉

8.5 {0i1 j0i+ j | i, j ≥ 0}

8.6 {0i+ j#0 j#0i | i, j ≥ 0}

8.7 {0i1 j2k | j ̸= i + k}

8.8 {0i1 j2k | i = 2k or 2i = k} 〈〈S18〉〉

8.9 {0i1 j2k | i + j = 2k} 〈〈F19〉〉

8.10
�

w#0#(0,w)
�

� w ∈ {0,1}∗
	

8.11 {0i1 j2k | i = j or j = k or i = k}

8.12 {0i1 j2k | i ̸= j or j ̸= k}

8.13 {02i1i+ j22 j | i, j ≥ 0}

8.14
�

x#yR
�

� x , y ∈ {0,1}∗ and x ̸= y
	

8.15 All strings in {0,1}∗ that are not palindromes. 〈〈HW〉〉

8.16
�

0n1an+b
�

� n≥ 0
	

, where a and b are arbitrary fixed natural numbers.

8.17
�

0n1an−b
�

� n≥ b/a
	

, where a and b are arbitrary fixed natural numbers.
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True or False (sanity check)

For each statement below, check “Yes” if the statement is ALWAYS true and “No” otherwise, and
give a brief explanation of your answer. For example:

XYes No If 2+ 2= 5 then Jeff is the Queen of England.
The hypothesis is false, so the implication is true.

Yes XNo x + y is even.
Suppose x = 1 and y = 0.

XYes No The set of all binary strings with an even number of 1s is regular.
0∗(10∗10∗)∗

—or—
Accepted by 2-state DFA, where current state = #1s mod 2.

Read each statement very carefully. Some of these are deliberately subtle. On the other hand,
you should not spend more than two minutes on any single statement.

Definitions

A.1 Every language is regular.

A.2 Every finite language is regular.

A.3 Every infinite language is regular.

A.4 For every language L, if L is regular then L can be represented by a regular expression.

A.5 For every language L, if L is not regular then L cannot be represented by a regular expression.

A.6 For every language L, if L can be represented by a regular expression, then L is regular.

A.7 For every language L, if L cannot be represented by a regular expression, then L is not
regular.

A.8 For every language L, if there is a DFA that accepts every string in L, then L is regular.

A.9 For every language L, if there is a DFA that accepts every string not in L, then L is not
regular.

A.10 For every language L, if there is a DFA that rejects every string not in L, then L is regular.

A.11 For every language L, if for every string w ∈ L there is a DFA that accepts w, then L is regular.
〈〈S14〉〉

A.12 For every language L, if for every string w ̸∈ L there is a DFA that rejects w, then L is regular.

A.13 For every language L, if some DFA recognizes L, then some NFA also recognizes L.

A.14 For every language L, if some NFA recognizes L, then some DFA also recognizes L.
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A.15 For every language L, if some NFA with ϵ-transitions recognizes L, then some NFA without
ϵ-transitions also recognizes L.

A.16 For every language L, and for every string w ∈ L, there is a DFA that accepts w. 〈〈F19〉〉

A.17 Every regular language is recognized by a DFA with exactly 374 accepting states. 〈〈F19〉〉

A.18 Every regular language is recognized by an NFA with exactly 374 accepting states. 〈〈F19〉〉

Closure Properties of Regular Languages

B.1 For all regular languages L and L′, the language L ∩ L′ is regular.

B.2 For all regular languages L and L′, the language L ∪ L′ is regular.

B.3 For all regular languages L, the language L∗ is regular.

B.4 For all regular languages A, B, and C , the language (A∪ B) \ C is regular.

B.5 For all languages L ⊆ Σ∗, if L is regular, then Σ∗ \ L is regular.

B.6 For all languages L ⊆ Σ∗, if L is regular, then Σ∗ \ L is not regular.

B.7 For all languages L ⊆ Σ∗, if L is not regular, then Σ∗ \ L is regular.

B.8 For all languages L ⊆ Σ∗, if L is not regular, then Σ∗ \ L is not regular.

B.9 For all languages L and L′, the language L ∩ L′ is regular. 〈〈S14〉〉

B.10 For all languages L and L′, the language L ∪ L′ is regular. 〈〈F14〉〉

B.11 For every language L, the language L∗ is regular. 〈〈F14, F16〉〉

B.12 For every language L, if L∗ is regular, then L is regular.

B.13 For all languages A, B, and C , the language (A∪ B) \ C is regular.

B.14 For every language L, if L is finite, then L is regular.

B.15 For all languages L and L′, if L and L′ are finite, then L ∪ L′ is regular.

B.16 For all languages L and L′, if L and L′ are finite, then L ∩ L′ is regular.

B.17 For all languages L and L′, if L is finite, then L ∪ L′ is regular. 〈〈F21〉〉

B.18 For all languages L and L′, if L is finite, then L ∩ L′ is regular. 〈〈F21〉〉

B.19 For all languages L ⊆ Σ∗, if L contains infinitely many strings in Σ∗, then L is not regular.

B.20 For all languages L ⊆ Σ∗, if L contains all but a finite number of strings of Σ∗, then L is
regular. 〈〈S14〉〉

B.21 For all languages L ⊆ {0,1}∗, if L contains a finite number of strings in 0∗, then L is regular.
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B.22 For all languages L ⊆ {0,1}∗, if L contains all but a finite number of strings in 0∗, then L is
regular.

B.23 If L and L′ are not regular, then L ∩ L′ is not regular.

B.24 If L and L′ are not regular, then L ∪ L′ is not regular.

B.25 If L is regular and L ∪ L′ is regular, then L′ is regular. 〈〈S14〉〉

B.26 If L is regular and L ∪ L′ is not regular, then L′ is not regular. 〈〈S14〉〉

B.27 If L is not regular and L ∪ L′ is regular, then L′ is regular.

B.28 If L is regular and L ∩ L′ is regular, then L′ is regular.

B.29 If L is regular and L ∩ L′ is not regular, then L′ is not regular.

B.30 If L is regular and L′ is finite, then L ∪ L′ is regular. 〈〈S14〉〉

B.31 If L is regular and L′ is finite, then L ∩ L′ is regular.

B.32 If L is regular and L ∩ L′ is finite, then L′ is regular.

B.33 If L is regular and L ∩ L′ =∅, then L′ is not regular.

B.34 If L is not regular and L ∩ L′ =∅, then L′ is regular. 〈〈F16〉〉

B.35 If L is regular and L′ is not regular, then L ∩ L′ =∅.

B.36 If L ⊆ L′ and L is regular, then L′ is regular.

B.37 If L ⊆ L′ and L′ is regular, then L is regular. 〈〈F14〉〉

B.38 If L ⊆ L′ and L is not regular, then L′ is not regular.

B.39 If L ⊆ L′ and L′ is not regular, then L is not regular. 〈〈F14〉〉

B.40 Two languages L and L′ are regular if and only if L ∩ L′ is regular. 〈〈F19〉〉

B.41 For all languages L ⊆ Σ∗, if L cannot be described by a regular expression, then some DFA
accepts Σ∗ \ L.

B.42 For all languages L ⊆ Σ∗, if no DFA accepts L, then the complement Σ∗ \ L can be described
by a regular expression.

B.43 For all languages L ⊆ Σ∗, if no DFA accepts L, then the complement Σ∗ \ L cannot be
described by a regular expression.

B.44 For all languages L ⊆ Σ∗, if L is recognized by a DFA, then Σ∗ \ L can be described by a
regular expression. 〈〈F16〉〉
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Properties of Context-free Languages

C.1 For all languages L ⊆ Σ∗, if L cannot be recognized by a DFA, then L is context-free.

C.2 For all languages L ⊆ Σ∗, if L cannot be recognized by a DFA, then L is not context-free.

C.3 For all languages L ⊆ Σ∗, if L can be recognized by a DFA, then L is context-free.

C.4 For all languages L ⊆ Σ∗, if L can be recognized by a DFA, then L is not context-free.

C.5 For all languages L ⊆ Σ∗, if L is not context-free, then L is regular.

C.6 For all languages L ⊆ Σ∗, if L is not context-free, then Σ∗ \ L is regular.

C.7 For all languages L ⊆ Σ∗, if L is not context-free, then L is not regular.

C.8 For all languages L ⊆ Σ∗, if L is not context-free, then Σ∗ \ L is not regular.

C.9 The empty language is context-free. 〈〈F19〉〉

C.10 Every finite language is context-free.

C.11 Every context-free language is regular. 〈〈F14〉〉

C.12 Every regular language is context-free.

C.13 Every non-context-free language is non-regular. 〈〈F16〉〉

C.14 Every language is either regular or context-free. 〈〈F19〉〉

C.15 For all context-free languages L and L′, the language L • L′ is also context-free. 〈〈F16〉〉

C.16 For every context-free language L, the language L∗ is also context-free.

C.17 For all context-free languages A, B, and C , the language (A∪ B)∗ • C is also context-free.

C.18 For every language L, the language L∗ is context-free.

C.19 For every language L, if L∗ is context-free then L is context-free.

Equivalence Classes. Recall that for any language L ⊂ Σ∗, two strings x , y ∈ Σ∗ are equivalent
with respect to L if and only if, for every string z ∈ Σ∗, either both xz and yz are in L, or neither
xz nor yz is in L—or more concisely, if x and y have no distinguishing suffix with respect to L.
We denote this equivalence by x ≡L y .

D.1 For every language L, if L is regular, then ≡L has finitely many equivalence classes.

D.2 For every language L, if L is not regular, then ≡L has infinitely many equivalence classes.
〈〈S14〉〉

D.3 For every language L, if ≡L has finitely many equivalence classes, then L is regular.

D.4 For every language L, if ≡L has infinitely many equivalence classes, then L is not regular.

D.5 For all regular languages L, each equivalence class of ≡L is a regular language.

D.6 For every language L, each equivalence class of ≡L is a regular language.
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Fooling Sets

E.1 If a language L has an infinite fooling set, then L is not regular.

E.2 If a language L has an finite fooling set, then L is regular.

E.3 If a language L does not have an infinite fooling set, then L is regular.

E.4 If a language L is not regular, then L has an infinite fooling set.

E.5 If a language L is regular, then L has no infinite fooling set.

E.6 If a language L is not regular, then L has no finite fooling set. 〈〈F14, F16〉〉

E.7 If a language L has a fooling set of size 374, then L is not regular. 〈〈F19〉〉

E.8 If a language L does not have a fooling set of size 374, then L is regular. 〈〈F19〉〉

Specific Languages (Gut Check). Do not construct complete DFAs, NFAs, regular expressions,
or fooling-set arguments for these languages. You don’t have time.

F.1 {0i1 j2k | i + j − k = 374} is regular. 〈〈S14〉〉

F.2 {0i1 j2k | i + j − k ≤ 374} is regular.

F.3 {0i1 j2k | i + j + k = 374} is regular.

F.4 {0i1 j2k | i + j + k > 374} is regular.

F.5 {0i1 j | i < 374< j} is regular. 〈〈S14〉〉

F.6
�

0m1n
�

� 0≤ m+ n≤ 374
	

is regular. 〈〈F14〉〉

F.7
�

0m1n
�

� 0≤ m− n≤ 374
	

is regular. 〈〈F14〉〉

F.8 {0i1 j | i, j ≥ 0} is not regular. 〈〈F16〉〉

F.9 {0i1 j | (i − j) is divisible by 374} is regular. 〈〈S14〉〉

F.10 {0i1 j | (i + j) is divisible by 374} is regular.

F.11
�

0n2 �
� n≥ 0
	

is regular.

F.12
�

037n+4
�

� n≥ 0
	

is regular.

F.13
�

0n10n
�

� n≥ 0
	

is regular.

F.14
�

0m10n
�

� m≥ 0 and n≥ 0
	

is regular.

F.15
�

0374n
�

� n≥ 0
	

is regular. 〈〈F19〉〉

F.16
�

037n14n
�

� n≥ 374
	

is regular. 〈〈F19〉〉

16



CS/ECE 374 A Midterm 1 Study Questions Fall 2023

F.17
�

037n14n
�

� n≤ 374
	

is regular. 〈〈F19〉〉

F.18 {w ∈ {0,1}∗ | |w| is divisible by 374} is regular.

F.19 {w ∈ {0,1}∗ | w represents a integer divisible by 374 in binary} is regular.

F.20 {w ∈ {0,1}∗ | w represents a integer divisible by 374 in base 473} is regular.

F.21
�

w ∈ {0,1}∗
�

� |#(0, w)−#(1, w)|< 374
	

is regular.

F.22
�

w ∈ {0,1}∗
�

� |#(0, x)−#(1, x)|< 374 for every prefix x of w
	

is regular.

F.23
�

w ∈ {0,1}∗
�

� |#(0, x)−#(1, x)|< 374 for every substring x of w
	

is regular.

F.24
�

w0#(0,w)
�

� w ∈ {0,1}∗
	

is regular.

F.25
�

w0#(0,w)mod 374
�

� w ∈ {0,1}∗
	

is regular.

Playing with Automata

G.1 Let M = (Σ,Q, s, A,δ) and M ′ = (Σ,Q, s,Q \A,δ) be arbitrary DFAs with identical alphabets,
states, starting states, and transition functions, but with complementary accepting states.
Then L(M)∩ L(M ′) =∅. 〈〈F16〉〉

G.2 Let M = (Σ,Q, s, A,δ) and M ′ = (Σ,Q, s,Q \A,δ) be arbitrary NFAs with identical alphabets,
states, starting states, and transition functions, but with complementary accepting states.
Then L(M)∩ L(M ′) =∅. 〈〈F16〉〉

G.3 Let M be a DFA over the alphabet Σ. Let M ′ be identical to M , except that accepting states
in M are non-accepting in M ′ and vice versa. Each string in Σ∗ is accepted by exactly one
of M and M ′.

G.4 Let M be an NFA over the alphabet Σ. Let M ′ be identical to M , except that accepting states
in M are non-accepting in M ′ and vice versa. Each string in Σ∗ is accepted by exactly one
of M and M ′.

G.5 If a language L is recognized by a DFA with n states, then the complementary language
Σ∗ \ L is recognized by a DFA with at most n+ 1 states.

G.6 If a language L is recognized by an NFA with n states, then the complementary language
Σ∗ \ L is recognized by a NFA with at most n+ 1 states.

G.7 If a language L is recognized by a DFA with n states, then L∗ is recognized by a DFA with at
most n+ 1 states.

G.8 If a language L is recognized by an NFA with n states, then L∗ is recognized by a NFA with
at most n+ 1 states.
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Language Transformations

H.1 For every regular language L, the language
�

wR
�

� w ∈ L
	

is also regular.

H.2 For every language L, if the language
�

wR
�

� w ∈ L
	

is regular, then L is also regular. 〈〈F14〉〉

H.3 For every language L, if the language
�

wR
�

� w ∈ L
	

is not regular, then L is also not regular.
〈〈F14〉〉

H.4 For every regular language L, the language
�

w
�

� wwR ∈ L
	

is also regular.

H.5 For every regular language L, the language
�

wwR
�

� w ∈ L
	

is also regular.

H.6 For every language L, if the language
�

w
�

� wwR ∈ L
	

is regular, then L is also regular. [Hint:
Consider the language L = {0n110n | n≥ 0}.]

H.7 For every regular language L, the language
�

0|w|
�

� w ∈ L
	

is also regular.

H.8 For every language L, if the language
�

0|w|
�

� w ∈ L
	

is regular, then L is also regular.

H.9 For every context-free language L, the language
�

wR
�

� w ∈ L
	

is also context-free.
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