You have 180 minutes to answer six numbered questions.
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. Recall that a run in a string $w \in\{0,1\}^{*}$ is a maximal substring of w whose characters are all equal. For example, the string 00011111110000 is the concatenation of three runs:

$$
00011111110000=000 \cdot 1111111 \cdot 0000
$$

(a) Let L_{a} denote the set of all non-empty strings in $\{0,1\}^{*}$ where the length of the first run is equal to the number of runs. For example, L_{a} contains the strings 0 and 1100000 and 0001110 , but does not contain 000111 or 100011 or the empty string ε (because it has no first run).

Prove that L_{a} is not a regular language.
(b) Let L_{b} denote the set of all strings in $\{0,1\}^{*}$ that contain an even number of odd-length runs. For example, L_{b} contains the strings 010111 and 1111 and the empty string ε, but does not contain either 0011100 or 11110.

- Describe a DFA or NFA that accepts L_{b} and
- Give a regular expression that describes L_{b}.
(You do not need to prove that your answers are correct.)

2. Aladdin and Badroulbadour are playing a cooperative game. Each player has an array of positive integers, arranged in a row of squares from left to right. Each player has a token, which starts at the leftmost square of their row; their goal is to move both tokens onto the rightmost squares at the same time.

On each turn, both players move their tokens in the same direction, either left or right. The distance each token travels is equal to the number under that token at the beginning of the turn. For example, if a token starts on a square labeled 5 , then it moves either five squares to the right or five squares to the left. If either token moves past either end of its row, then both players immediately lose.

For example, if Aladdin and Badroulbadour are given the arrays

they can win the game by moving right, left, left, right, right, left, right. On the other hand, if they are given the arrays

$$
\begin{aligned}
& \text { B: } \begin{array}{ll:l:l:l:l}
\hline & 4 & 1 & 1 & 2 & 1 \\
\cline { 2 - 6 }
\end{array}
\end{aligned}
$$

they cannot win the game. (The first move must be to the right; then Aladdin's token moves out of bounds on the second turn.)

Describe and analyze an algorithm to determine whether Aladdin and Badroulbadour can solve their puzzle, given the input arrays $A[1 . . n]$ and $B[1 . . n]$.
3. Submit a solution to exactly one of the following problems. Don't forget to tell us which problem you've chosen!
(a) Let $G=(V, E)$ be an arbitrary undirected graph. A subset $S \subseteq V$ of vertices is mostly independent if more than half the vertices of S have no neighbors in S. Prove that finding the largest mostly independent set in G is NP-hard.
(b) Prove that the following problem is NP-hard: Given an undirected graph G, find the largest integer k such that G contains two disjoint independent sets of size k.
(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)
4. Recall that a palindrome is any string that is equal to its reversal, like REDIVIDER or POOP.
(a) Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is a palindrome.
(b) A double palindrome is the concatenation of two non-empty palindromes, like REFEREE $=$ REFER $\cdot E E$ or POOPREDIVIDER $=$ POOP \bullet REDIVIDER. Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is a double palindrome. [Hint: Use your algorithm from part (a).]

For both algorithms, the input is an array $A[1 . . n]$, and the output is an integer. For example, given the input string MAYBEDYNAMICPROGRAMMING, your algorithm for part (a) should return 7 (for the subsequences NMRORMN and MAYBYAM, among others), and your algorithm for part (b) should return 12 (for the subsequence MAYBYAMIRORI).
5. You have a collection of n lockboxes and m gold keys. Each key unlocks at most one box. Without a matching key, the only way to open a box is to smash it with a hammer. Your baby brother has locked all your keys inside the boxes! Luckily, you know which keys (if any) are inside each box.
(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes. Describe and analyze an algorithm to determine if it is possible to retrieve all the keys without smashing any box except the one your brother has chosen.
(b) Describe and analyze an algorithm to compute the minimum number of boxes that must be smashed to retrieve all the keys.
6. For each statement below, there are two boxes in the answer booklet labeled "Yes" and "No". Check "Yes" if the statement is always true and "No" otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume $P \neq N P$. If there is any other ambiguity or uncertainty about an answer, check "No". For example:

- $x+y=5$

Suppose $x=3$ and $y=4$.

- 3SAT can be solved in polynomial time.

- If $\mathrm{P}=\mathrm{NP}$ then Jeff is the Queen of England.

The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!
(a) Which of the following statements are true for all languages $L \subseteq\{0,1\}^{*}$?

- $L^{*}=\left(L^{*}\right)^{*}$
- If L is decidable, then L^{*} is decidable.
- L is either regular or NP-hard.
- If L is undecidable, then L has an infinite fooling set.
- The language $\{\langle M\rangle \mid M$ decides $L\}$ is undecidable.
(b) Which of the following statements are true?
- The solution to the recurrence $T(n)=4 T(n / 4)+O(n)$ is $T(n)=O(n \log n)$.
- The solution to the recurrence $T(n)=4 T(n / 4)+O\left(n^{2}\right)$ is $T(n)=O\left(n^{2} \log n\right)$.
- Every directed acyclic graph contains at most one source and at most one sink.
- depth-first search explores every path from the source vertex s to every other vertex in the input graph.
- Suppose $A[1$.. $n]$ is an array of integers. Consider the following recursive function:

We can compute $\operatorname{Huh}(n, 0)$ by memoizing this function into an array $\operatorname{Huh}[0 . . n, 0 . . n]$ in $O\left(n^{2}\right)$ time, increasing i in the outer loop and increasing j in the inner loop.

1. [continued]
(c) Suppose we want to prove that the following language is undecidable.

$$
\text { MugGle }:=\{\langle M\rangle \mid M \text { accepts SCIENCE but rejects MAGIC }\}
$$

Professor Potter, your instructor in Defense Against Models of Computation and Other Dark Arts, suggests a reduction from the standard halting language

$$
\text { HALT }:=\{(\langle M\rangle, w) \mid M \text { halts on input } w\} .
$$

Specifically, suppose there is a Turing machine DetectoMuggletum that decides Muggle. Professor Potter claims that the following algorithm decides Halt.

```
DECIDEHAlt(\langleM\rangle,w):
    Write code for the following algorithm:
        RUBBERDUCK(x):
        run M on input w
        <<ignore the output of M\rangle\rangle
        if }x=\mathrm{ MAGIC
            return FALSE
        else
            return True
    return DetectoMuggletum(\langleRubberDuck\rangle)
```

Which of the following statements must be true for all inputs $\langle M\rangle \# w$?

- If M accepts w, then RubberDuck accepts MAGIC.
- If M diverges on w, then RubberDuck rejects MAGIC.
- If M accepts w, then DetectoMuggletum accepts 〈RubberDuck〉.
- If M diverges on w, then DecideHalt rejects $(\langle M\rangle, w)$.
- DecideHalt decides the language Halt. (That is, Professor Potter's reduction is actually correct.)
(d) Suppose there is a polynomial-time reduction from some language $A \subseteq\{0,1\}$ reduces to some other language $B \subseteq\{0,1\}$. Which of the following statements are true, assuming $\mathrm{P} \neq \mathrm{NP}$?
- $A \cap B \neq \varnothing$.
- There is an algorithm to transform any Python program that solves B in polynomial time into a Python program that solves A in polynomial time.
- If B is NP-hard, then A is NP-hard.
- If B is decidable, then A is decidable.
- If a Turing machine M accepts every string in B, the same Turing machine M also accepts every string in A.

