# CS/ECE 374 A $\&$ Fall 2023 <br> ค Practice Final Exam 2 ~ 

December 7, 2023

## Name:

NetID:

## - Don’t panic!

- You have 180 minutes to answer six numbered questions. The questions are described in more detail in a separate handout.
- If you brought anything except your writing implements, your two hand-written doublesided $8 \frac{1}{2} / 2^{\prime \prime} \times 11^{\prime \prime}$ cheat sheet, and your university ID, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.
- Please clearly print your name and your NetID in the boxes above.
- Please also print your name at the top of every page of the answer booklet, except this cover page. We want to make sure that if a staple falls out, we can reassemble your answer booklet. (It doesn't happen often, but it does happen.)
- Do not write outside the black boxes on each page. These indicate the area of the page that our scanner will actually scan. If the scanner can't see your work, we can't grade it.
- If you run out of space for an answer, please use the overflow pages at the back of the answer booklet, but please clearly indicate where we should look. If we can't find your work, we can't grade it.
- We will provide scratch paper to anyone who asks, but only work that is written into the stapled answer booklet will be graded. In particular, we will not grade any pages that you separate from the answer booklet.
- Proofs or other justifications are required for full credit if and only if we explicitly ask for them, using the word prove or justify in bold italics.
- Breathe in. Breathe out. You've got this.


## CS/ECE 374 A $\triangleleft$ Fall 2023 Name: Practice Final 2 Problem 1

Recall that a run in a string $w \in\{0,1\}^{*}$ is a maximal substring of $w$ whose characters are all equal.
(a) Let $L_{a}$ denote the set of all non-empty strings in $\{0,1\}^{*}$ where the length of the first run is equal to the number of runs. Prove that $L_{a}$ is not a regular language.
(b) Let $L_{b}$ denote the set of all strings in $\{0,1\}^{*}$ that contain an even number of odd-length runs. Describe a DFA or NFA that accepts $L_{b}$ and give a regular expression that describes $L_{b}$. (You do not need to prove that your answers are correct.)

## CS/ECE 374 A $\triangleleft$ Fall 2023 Name: <br> Practice Final 2 Problem 2

Aladdin and Badroulbadour are playing a cooperative game. Each player has an array of positive integers, arranged in a row of squares from left to right. Each player has a token, which starts at the leftmost square of their row; their goal is to move both tokens onto the rightmost squares at the same time.

On each turn, both players move their tokens in the same direction, either left or right. The distance each token travels is equal to the number under that token at the beginning of the turn. If either token moves past either end of its row, then both players immediately lose.

Describe and analyze an algorithm to determine whether Aladdin and Badroulbadour can solve their puzzle, given the input arrays $A[1 . . n]$ and $B[1 . . n]$.

| CS/ECE 374 A $\&$ Fall 2023 | Name: |
| :---: | :--- |
| Practice Final 2 Problem 3 |  |

Submit a solution to exactly one of the following problems. Don't forget to tell us which problem you've chosen!
(a) Let $G=(V, E)$ be an arbitrary undirected graph. A subset $S \subseteq V$ of vertices is mostly independent if more than half the vertices of $S$ have no neighbors in $S$. Prove that finding the largest mostly independent set in $G$ is NP-hard.
(b) Prove that the following problem is NP-hard: Given an undirected graph $G$, find the largest integer $k$ such that $G$ contains two disjoint independent sets of size $k$.
(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)

## CS/ECE 374 A \& Fall 2023 Name: Practice Final 2 Problem 4

(a) Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is a palindrome.
(b) A double palindrome is the concatenation of two non-empty palindromes. Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is a double palindrome. [Hint: Use your algorithm from part (a).]

## CS/ECE 374 A $\&$ Fall 2023 <br> Name: <br> Practice Final 2 Problem 5

You have a collection of $n$ lockboxes and $m$ gold keys. Each key unlocks at most one box. Without a matching key, the only way to open a box is to smash it with a hammer. Your baby brother has locked all your keys inside the boxes! Luckily, you know which keys (if any) are inside each box.
(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes. Describe and analyze an algorithm to determine if it is possible to retrieve all the keys without smashing any box except the one your brother has chosen.
(b) Describe and analyze an algorithm to compute the minimum number of boxes that must be smashed to retrieve all the keys.

```
CS/ECE 374 A & Fall 2023 Name:
Practice Final }2\mathrm{ Problem }
```

For each statement below, there are two boxes in the answer booklet labeled "Yes" and "No". Check "Yes" if the statement is always true and "No" otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume $P \neq N P$. If there is any other ambiguity or uncertainty about an answer, check "No". Read each statement very carefully; some of these are deliberately subtle!
(a) Which of the following statements are true for all languages $L \subseteq\{0,1\}^{*}$ ?

- $L^{*}=\left(L^{*}\right)^{*}$

Yes No

- If $L$ is decidable, then $L^{*}$ is decidable.
$\square$
- $L$ is either regular or NP-hard.

- If $L$ is undecidable, then $L$ has an infinite fooling set.

- The language $\{\langle M\rangle \mid M$ decides $L\}$ is undecidable.
$\square$
$\square$
No
(b) Which of the following statements are true?
- The solution to the recurrence $T(n)=4 T(n / 4)+O(n)$ is $T(n)=O(n \log n)$.
$\square$
- The solution to the recurrence $T(n)=4 T(n / 4)+O\left(n^{2}\right)$ is $T(n)=O\left(n^{2} \log n\right)$.
$\square$
No
- Every directed acyclic graph contains at most one source and at most one sink.
$\square$
$\square$
- Depth-first search explores every path from the source vertex $s$ to every other vertex in the input graph.

$\qquad$
- Suppose $A[1 . . n]$ is an array of integers. Consider the following recursive function:

We can compute $\operatorname{Huh}(n, 0)$ by memoizing this function into an array $\operatorname{Huh}[0 . . n, 0 . . n]$ in $O\left(n^{2}\right)$ time, increasing $i$ in the outer loop and increasing $j$ in the inner loop.

$\qquad$

Problem 6 continues onto the next two pages.
(c) Suppose we want to prove that the following language is undecidable.

$$
\text { Muggle }:=\{\langle M\rangle \mid M \text { accepts SCIENCE but rejects MAGIC }\}
$$

Professor Potter, your instructor in Defense Against Models of Computation and Other Dark Arts, suggests a reduction from the standard halting language

$$
\text { Halt }:=\{(\langle M\rangle, w) \mid M \text { halts on input } w\} .
$$

Specifically, suppose there is a Turing machine DetectoMuggletum that decides Muggle. Professor Potter claims that the following algorithm decides Halt.

```
DECIDEHAlT(}\langleM\rangle,w)
    Write code for the following algorithm:
        RubbERDUCK(x):
    run }M\mathrm{ on input }
    <<ignore the output of M\rangle\rangle
    if }x=\mathrm{ MAGIC
        return FalSE
    else
            return TRuE
    return DetectoMuggletum(\langleRubberDuck\rangle)
```

Which of the following statements must be true for all inputs $\langle M\rangle \# w$ ?

- If $M$ accepts $w$, then RubberDuck accepts MAGIC.

$\qquad$
- If $M$ diverges on $w$, then RubberDuck rejects MAGIC.
$\square$
$\square$
- If $M$ accepts $w$, then DetectoMuggletum accepts 〈RubberDuck〉.

- If $M$ diverges on $w$, then DecideHalt rejects $(\langle M\rangle, w)$.
$\square$
Yes No
- DecideHalt decides the language Halt. (That is, Professor Potter's reduction is actually correct.)


Problem 6 continues onto the next page.
(d) Suppose there is a polynomial-time reduction from some language $A \subseteq\{0,1\}$ reduces to some other language $B \subseteq\{0,1\}$. Which of the following statements are true, assuming $P \neq N P$ ?

- $A \cap B \neq \varnothing$.

- There is an algorithm to transform any Python program that solves $B$ in polynomial time into a Python program that solves $A$ in polynomial time.
$\square$
Yes $\square$
- If $B$ is NP-hard, then $A$ is NP-hard.
$\square$ No
- If $B$ is decidable, then $A$ is decidable.
$\square$
$\square$
- If a Turing machine $M$ accepts every string in $B$, the same Turing machine $M$ also accepts every string in $A$.
$\square$
(overflow / scratch paper)
(overflow / scratch paper)
(overflow / scratch paper)
(overflow / scratch paper)

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?
3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

MaxClique: Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$ ?
MinVertexCover: Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$ ?

MinSetCover: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set $S$, what is the size of the smallest subcollection whose union is $S$ ?

MinHittingSet: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_{i}$ ?

3Color: Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

ChromaticNumber: Given an undirected graph $G$, what is the minimum number of colors required to color its vertices, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?

HamiltonianCycle: Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

TravelingSalesman: Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$ ?

LongestPath: Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$ ?

SteinerTree: Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?

SubsetSum: Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$ ?
Partition: Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?
3Partition: Given a set $X$ of $3 n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?

IntegerLinearProgramming: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^{n}$ and $c \in Z^{d}$, compute max $\{c \cdot x \mid$ $\left.A x \leq b, x \geq 0, x \in \mathbb{Z}^{d}\right\}$.

FeasibleILP: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^{n}$, determine whether the set of feasible integer points $\max \left\{x \in \mathbb{Z}^{d} \mid A x \leq b, x \geq 0\right\}$ is empty.

Draughts: Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?

