You have 180 minutes to answer six numbered questions.

Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, there are two boxes in the answer booklet labeled “Yes” and “No”. Check “Yes” if the statement is always true and “No” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume $P \neq NP$. If there is any other ambiguity or uncertainty about an answer, check “No”. For example:

- $x + y = 5$

 Yes

 No

 Suppose $x = 3$ and $y = 4$.

- 3SAT can be solved in polynomial time.

 Yes

 No

 3SAT is NP-hard.

- If $P = NP$ then Jeff is the Queen of England.

 Yes

 No

 The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

(a) Which of the following statements are true?

- The solution to the recurrence $T(n) = 3T(n/3) + O(n^2)$ is $T(n) = O(n^2)$.
- The solution to the recurrence $T(n) = 9T(n/3) + O(n)$ is $T(n) = O(n^2)$.
- There is a forest with 374 vertices and 225 edges. (Recall that a forest is an undirected graph with no cycles.)
- Given any directed graph G whose edges have positive weights, we can compute shortest paths from one vertex s to every other vertex of G in $O(VE)$ time using Bellman-Ford.
- Suppose $A[1..n]$ is an array of integers. Consider the following recursive function:

$$Rizz(i, k) = \begin{cases}
0 & \text{if } i > k \\
1 & \text{if } i = k \\
\max \left\{ \begin{array}{l}
Rizz(i, j - 1) + Rizz(j + 1, k) \\
+ A[i] \cdot A[j] \cdot A[k] \end{array} \right\} & \text{otherwise}
\end{cases}$$

We can compute $Rizz(1, n)$ by memoizing this function into a two-dimensional array $Rizz[1..n, 1..n]$, which we fill by decreasing i in the outer loop and increasing k in the inner loop, in $O(n^2)$ time.

Problem 1 continues onto the next page.
1. (continued)

(b) Which of the following statements are true for at least one language \(L \subseteq \{0, 1\}^\ast \)?
- \((L^*)^\ast\) is finite.
- \(L\) is decidable but its complement \(\overline{L}\) is undecidable.
- \(\{M \mid M\ \text{accepts} \ L\}\) is undecidable.
- \(L\) is the intersection of two NP-hard languages and \(L\) is finite.
- There is a polynomial-time reduction from \(L\) to the halting problem.

(c) Consider the following pair of languages:
- \(\text{Tree} = \{G \mid G\ \text{is a connected undirected graph with no cycles}\}\)
- \(\text{HamPath} = \{G \mid G\ \text{is an undirected graph that contains a Hamiltonian path}\}\)
(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following statements are true, assuming \(P \neq NP\)?
- \(\text{Tree}\) is NP-hard.
- \(\text{Tree} \cap \text{HamPath}\) is NP-hard.
- \(\text{Tree} \cup \text{HamPath}\) is NP-hard.
- \(\text{HamPath}\) is undecidable.
- A reduction from \(\text{Tree}\) to \(\text{HamPath}\) would imply \(P = NP\).

(d) Suppose there is a polynomial-time reduction \(R\) from some language \(A \in \{0, 1\}^\ast\) to some other language \(B \in \{0, 1\}^\ast\). Which if the following statements are always true, assuming \(P \neq NP\)?
- Problem \(B\) is NP-hard.
- If \(A\) is finite, then \(B\) is finite.
- If \(A\) is NP-hard, then \(B\) is NP-hard.
- If \(A\) is undecidable, then \(B\) is undecidable.
- If \(A \in P\), then \(B \in P\).

Problems 2–6 appear on the next two pages.
2. Submit a solution to **exactly one** of the following problems.

 (a) A **theta-graph** is a connected undirected graph in which two vertices have degree 3, and all other vertices have degree 2. Equivalently, a theta-graph is the union of three undirected paths that have the same endpoints, but no other vertices in common. The **size** of a theta-graph is the total number of vertices.

 Prove that it is **NP-hard** to compute the size of the largest theta-graph that is a subgraph of a given undirected graph G.

 (b) A **clique-partition** of a graph $G = (V, E)$ is a partition of the vertices V into disjoint subsets $V_1 \cup V_2 \cup \cdots \cup V_k$, such that for each index i, every pair of vertices in subset V_i is connected by an edge in G. The **size** of a clique partition is the number of subsets V_i.

 Prove that it is **NP-hard** to compute the minimum-size clique partition of a given undirected graph G.

 In fact, both of these problems are **NP-hard**, but we only want a proof for one of them. Don’t forget to tell us which problem you’ve chosen!

3. A **triumph** in a sequence of integers (from the Latin *tri-* meaning “three” and *-umph* meaning “bodacious”) is a consecutive triple of sequence elements whose sum is a multiple of 3. For example, the sequence

 \[\langle 3, 1, 4, 1, 5, 9, 6, 2, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6 \rangle \]

 contains five triumphs (indicated by lines above and below).

 We say that one sequence A is more **triumphant** (or less **heinous**) than another sequence B if there are more triumphs in A than in B.

 Describe and analyze an algorithm to compute the number of triumphs in the most triumphant (or equivalently, least heinous) subsequence of a given array $A[1..n]$ of integers.

 For example, given the input array $\langle 0, 1, 1, 2, 3, 5, 8, 13, 21 \rangle$, your algorithm should return the integer 4, which is the number of triumphs in the most triumphant subsequence $\langle 0, 1, 2, 3, 8, 13, 21 \rangle$. Excellent!

Problems 4–6 appear on the next page.
4. Suppose we are given a directed graph $G = (V, E)$, where every edge $e \in E$ has a positive weight $w(e)$, along with two vertices s and t.

(a) Suppose each vertex of G is colored either orange, green, or purple. Describe and analyze an algorithm to find the shortest walk from s to t in G that never visits two consecutive vertices with the same color.

(b) Now suppose each edge of G is colored either orange, green, or purple. Describe and analyze an algorithm to find the shortest walk from s to t in G that never traverses two consecutive edges with the same color.

5. Let T be a full binary tree, meaning that every node has either two children or no children.

- Recall that the height of a vertex v in T is the length of the longest path in T from v down to a leaf. In particular, every leaf of T has height zero.
- A vertex v is AVL-balanced if v is a leaf, or if the heights of v’s children differ by at most 1. (You might recall from CS 225 that an AVL-tree is a binary search tree in which every vertex is AVL-balanced.)

Describe and analyze an algorithm to compute the number of AVL-balanced vertices in T.

6. (a) Let L_a denote the set of all strings $w \in \{0, 1, 2\}^*$ such that $\#(1, w) + 2 \cdot \#(2, w)$ is divisible by 3. For example, L_a contains the strings 0012 and 20210202 and the empty string ϵ, but L_a does not include the strings 121 or 0122210.

Describe a DFA of NFA that accepts L_a. (You do not need to prove that your answer is correct.)

(b) Let L_b denote the set of all strings $w \in \{0, 1, 2\}^*$ such that no two symbols appear the same number of times, or in other words, the integers $\#(0, w)$ and $\#(1, w)$ and $\#(2, w)$ are all different. For example, L_b contains the strings 110212 and 20220, but L_b does not include the string 01212 or 2120210 or the empty string ϵ.

Prove that L_b is not a regular language.