Regular Languages \(\xrightarrow{}\) DFA Languages

Last lec:

\[(0^* + 01) \cdot (10)^* \]

NFA
- allows choices
- \(\varepsilon\)-transitions

Ex:

\[s \xrightarrow{\varepsilon} a_0 \xrightarrow{0} a_1 \xrightarrow{\varepsilon} a_2 \xrightarrow{1} a_3 \]

Then:
If \(L \) is regular,
Then \(L \) is accepted by some NFA \(M \).

Ps:
Let \(r \) be the reg. exp. for \(L \)

\[r = \{+, \cdot, ^*\} \]

Construct \(M \) recursively

Base case: \(r = \varepsilon, \varepsilon \in \Sigma \)

Induction: (see proof from the last lec)

Plan:

Regular \(\xrightarrow{}\) NFA \(\xrightarrow{\varepsilon}\) DFA

Set \(B \) as Regular lang

\(B \) is accepted by NFA

\(B \) is DFA
* NFA \rightarrow DFA.

Then: It L is accepted by NFA M
Then L \subset \subset some DFA M'

Pf.: Constructive: Power-set Construction.

Let NFA \(M = (Q, \Sigma, s, S, A) \) \(Q \times \{2, 0, 1, 2\} \rightarrow P(Q) \)

Construct DFA \(M' = (Q', \Sigma, s', S', A') \)

\(Q' = P(Q) \)

\(s' = \varepsilon\text{-reach}(s) \)

\(A' = \{ T \in P(Q) \mid T \cap A \neq \emptyset \} \)

\(s': Q' \times \Sigma \rightarrow Q' = P(Q) \)

\(T \in Q', a \in \Sigma \)

\(s'(T, a) = \bigcup_{q \in T} s^*(q, a) \)

Lemma: \(s^*(T, \varepsilon) = \bigcup_{q \in T} s^*(q, \varepsilon) \)

Pf: By induction (base, \ldots)
Then, \(x \in L(M') \iff \delta^*(s', x) \in A' \)

\[\iff \delta^*(\epsilon, x) \in A' \]

(By Lemma)

\[\iff \bigcup_{q \in \text{e-read } s_3^*} \delta^*(q, x) \in A' \]

(By def \(\delta^* \) for an NFA)

\[\iff \delta^*(s, x) \in A' \]

(By def \(A' \))

\[\iff \delta(s, x) \cap A \neq \emptyset \]

\(\iff x \in L(M) \)

Ex 1: Strings ending with 0 or 1.

NFA

DFA

\[\delta'(q_0^3, 0) = \delta^*(q_0, 0) = \delta(q_0, 0) = q_1 \]

\[\delta'(q_0^3, 1) = \delta(q_0, 1) \cup \delta(q_1, 0) = \{q_0, q_3\} \]

\[\delta'(q_0^3, 0) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_2\} \cup \{q_0, q_3\} = \{q_0, q_2, q_3\} \]

Ex 2: \((0^* (01)^* 1)^* \)
Ex. $2: \ 0^* \ (01)^* \ 1^*$

\[\delta'(\{q_0, q_1, q_3\}, 0) = \delta(\{q_0, q_1, q_3\}, 0) \cup \delta^*(\{q_3\}) \]
\[= \{q_0, q_1, q_2, q_3\} \cup \{q_3\} \]
\[= \{q_0, q_1, q_2, q_3\} \]

DFA \rightarrow Regular Lang.

Thm: If L is accepted by DFA M Then L is regular.

Pf: Constructive. "State Elimination Method"

Intuition:
Pf Sket: Let DFA $M = (Q, \Sigma, \delta, s, F)$

Construct reg. exp. for language $L = L(M)$

By the following method:

1. Introduce s' & s' states
 Add edge from s' to s or ε
 " " " every state in A to s' or ε

2. Eliminate states of Q, one-by-one
 Through the following rule:
 $q_i \rightarrow q_k$
 $q_i \rightarrow q_j$
 If may be that $q_j = q_i$.
3. Return label on edge

Ex:

DFA

Req. Ex. 1.

2. \(\Rightarrow \) Remove \(q_2 \)

\(\Rightarrow \) Remove \(q_0 \)

\(\Rightarrow \) Remove \(q_1 \)

\(\Rightarrow \) Remove \(q_{i} \)
Kleene's Theorem (1956):

L is regular iff L is accepted by some DFA M.

Proof: Constructive / Algorithm

\[\text{Regular} \xrightarrow{\text{Recursive}} \text{NFA} \xrightarrow{\text{Construction}} \text{DFA} \xleftarrow{\text{State Elimination Method}} \]

Cor.: If L is regular then \(\overline{L} \) is regular.

If \(L_1 \), \(L_2 \) are "L1 \& L2" then \(L_1 \cup L_2 \), \(L_1 L_2 \)

Remark: Closed under other ops, like Reverse, Homomorphism, Prefix, Suffix, Subseq, Supseq ...
\[L = \{ \text{set of all regular languages} \} \]

\[L \] is "closed under \(\circ \)" if

\[\forall L, f(L) \in L \]