Min Spanning Tree (MST).

Given an undirected connected weighted graph $G = (V, E), W : E \rightarrow \mathbb{R}^+$,

Find a connected subgraph that includes all

the vertices with minimum total weight

eg.

![Graph Diagram]

One sol’n:

$5 + 15 + 7 + 2 = 55$

Better Sol’n:

$5 + 7 + 2 + 21 = 35$

Best.

Obs1: Opt sol’n is acyclic.

Because removing

“any” edge from C

leaves the graph connected

(Appln: Network Design)

A feasible/opt sol’n is

acyclic, undirected graph

Opt sol’n is a tree.

Obs2: The #edges in a

tree with n vertices is $(n-1)$.
Tree with \(n \) vertices is \((n-1)\).

Idea 0: Enumerate \(\Rightarrow\) Exponential time.

Idea 1: Greedy!

* Kruskal's Alg'rn (1956): High-level.

1. \(T = \emptyset \)
2. repeat \{ \}
3. Pick next smallest weight edge \(e \)
4. \(\rightarrow \) if \(T \cup \{ e \} \) does not contain a cycle then insert \(e \) to \(T \).

```
Snap shot:
```

Naive Running Time:
line \(t \) : \(O(n) \) (BFS/DFS)
Total : \(O(mn) \)

```
Eg.
```
Faster Implementation using "union-find" data structure.

1. Sort edges in increasing order of weights. $= O(m \log n)$
2. Create $E \cup V$, $\forall v \in V$
3. For each (u, v) in the order
4. If $u \cup v$ are in different "sets" then
5. Output (u, v). Union the two sets.

Snapshot:

Forest

Running Time:

Since $\log n$:

Since $n \leq V \Rightarrow O(n \log n)$
Running time:

- Union-find:
 - Find set containing given vertex \(v \). \(\Rightarrow O(\alpha(n)) \) amortized.
 - Union two sets. \(\Rightarrow O(1) \)

\[\alpha(n) \ll \log \log \log \ldots \log n \]

- Lines 3-5: \(O(m \cdot \alpha(n)) \)
- Total: \(O(m \log n + m \cdot \alpha(n)) = O(m \log n) \).

* Correctness Pf: (Assume all weights are distinct)

Key Lemma: Given \(S \subseteq V \) smallest weight edge \(e \in E \) \(S \cup \{v \} \subseteq S \)

Pf: By contradiction. Suppose \(e \notin T^* \)

\[w(e') > w(e) \]

(exchange arg.)
\[T = T^* \cup \{ e \} \backslash e_1 \] is a tree that spans all the vertices.

\[w(T) = w(T^*) + w(e) - w(e_1) < w(T^*) \]

because \(w(e) < w(e_1) \).

A contradiction to \(T^* \) being MST. \(\Box \)

Correctness for Kruskal's Algorithm:

For each edge \((u,v)\) that is inserted to \(T \).

We have that \(e \) is a smallest weight crossing \(S = \text{component of} \ u \cup (V \setminus S) \).

Then by the key lemma \((u,v)\) must be in the MST. \(\blacksquare \)

Prim's Alg'm (1957): High-level like Dijkstra's.
Prim's Alg'm (1957): High-level like Dijkstra's

1. \(S = \{s\} \), \(T = \emptyset \)
2. while \(S \neq V \) do
3. Pick an edge \((u,v)\) s.t. \(u \in S \), \(v \in V \setminus S \) with \(\min \{ w(u,v) \} \).
4. Insert \((u,v)\) to \(T \).
5. Insert \(v \) to \(S \)

Running Time: like Dijkstra using Fibonacci heap \(O(n \log m + m) \)

Correctness Pf: Just by the key lemma!

If we add \((u,v)\) to \(T \), then it must be that \((u,v)\) is min weight crossing edge for the current set \(S \).

\[\text{Eq.} \]

\[\text{Diagram} \]

\[\text{Diagram} \]

\[\text{Diagram} \]
* Other Alg'm:

- Boruvka (1926) \(O(m \log n) \)
- K (1956) \(O(m \log n) \)
- P (1957) \(O(m \log n + m) \)
- Yao '75 (1975) \(O(m \log \log n) \)
- Fredman, Tarjan (1985) \(O(m \log^* n) \)
- Gabow et al. (1986) \(O(m \log (\log^* n)) \)
- Karger, Klein, Tarjan (1995) \(O(m) \) Randomized.
- Cazelle '97 \(O(m \log \log n) \) det.

OPEN \(O(m) \) det?
OPEN. \(O(m) \) au.