Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1. Given an array $A[1..n]$ of integers, compute the length of a longest increasing subsequence.

Solution:

[1 of ∞] Add a sentinel value $A[0] = -\infty$. Let $LIS(i, j)$ denote the length of the longest increasing subsequence of $A[j..n]$ where every element is larger than $A[i]$. This function obeys the following recurrence:

$$LIS(i, j) = \begin{cases} 0 & \text{if } j > n \\ LIS(i, j + 1) & \text{if } j \leq n \text{ and } A[i] \geq A[j] \\ \max \{LIS(i, j + 1), 1 + LIS(j, j + 1)\} & \text{otherwise} \end{cases}$$

We need to compute $LIS(0, 1)$.

Solution:

[2 of ∞] Add a sentinel value $A[n + 1] = -\infty$. Let $LIS(i, j)$ denote the length of the longest increasing subsequence of $A[1..j]$ where every element is smaller than $A[j]$. This function obeys the following recurrence:

$$LIS(i, j) = \begin{cases} 0 & \text{if } i < 1 \\ LIS(i - 1, j) & \text{if } i \geq 1 \text{ and } A[i] \geq A[j] \\ \max \{LIS(i - 1, j), 1 + LIS(i - 1, i)\} & \text{otherwise} \end{cases}$$

We need to compute $LIS(n, n + 1)$.

Solution:

[3 of ∞] Let $LIS(i)$ denote the length of the longest increasing subsequence of $A[i..n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$LIS(i) = \begin{cases} 1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\ 1 + \max \{LIS(j) \mid j > i \text{ and } A[j] > A[i]\} & \text{otherwise} \end{cases}$$

(The first case is actually redundant if we define $\max \emptyset = 0$.) We need to compute $\max_i LIS(i)$.

Solution:

[4 of ∞] Add a sentinel value $A[0] = -\infty$. Let $LIS(i)$ denote the length of the longest increasing subsequence of $A[i..n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$LIS(i) = \begin{cases} 1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\ 1 + \max \{LIS(j) \mid j > i \text{ and } A[j] > A[i]\} & \text{otherwise} \end{cases}$$

(The first case is actually redundant if we define $\max \emptyset = 0$.) We need to compute $LIS(0) - 1$; the -1 removes the sentinel $-\infty$ from the start of the subsequence.
Solution:

[#5 of ∞] Add sentinel values $A[0] = -\infty$ and $A[n+1] = \infty$. Let $\text{LIS}(j)$ denote the length of the longest increasing subsequence of $A[1..j]$ that ends with $A[j]$. This function obeys the following recurrence:

$$\text{LIS}(j) = \begin{cases} 1 & \text{if } j = 0 \\ 1 + \max\{\text{LIS}(i) \mid i < j \text{ and } A[i] < A[j]\} & \text{otherwise} \end{cases}$$

We need to compute $\text{LIS}(n+1) - 2$; the -2 removes the sentinels $-\infty$ and ∞ from the subsequence.

2 Given an array $A[1..n]$ of integers, compute the length of a **longest decreasing subsequence**.

Solution:

[one of many] Add a sentinel value $A[0] = \infty$. Let $\text{LDS}(i, j)$ denote the length of the longest decreasing subsequence of $A[j..n]$ where every element is smaller than $A[i]$. This function obeys the following recurrence:

$$\text{LDS}(i, j) = \begin{cases} 0 & \text{if } j > n \\ \text{LDS}(i, j + 1) & \text{if } j \leq n \text{ and } A[i] \leq A[j] \\ \max\{\text{LDS}(i, j + 1), 1 + \text{LDS}(j, j + 1)\} & \text{otherwise} \end{cases}$$

We need to compute $\text{LDS}(0, 1)$.

Solution:

[clever] Multiply every element of A by -1, and then compute the length of the longest increasing subsequence using the algorithm from problem 1.

3 Given an array $A[1..n]$ of integers, compute the length of a **longest alternating subsequence**.

Solution:

[one of many] We define two functions:

- Let $\text{LAS}^+(i, j)$ denote the length of the longest alternating subsequence of $A[j..n]$ whose first element (if any) is larger than $A[i]$ and whose second element (if any) is smaller than its first.
- Let $\text{LAS}^-(i, j)$ denote the length of the longest alternating subsequence of $A[j..n]$ whose first element (if any) is smaller than $A[i]$ and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

$$\text{LAS}^+(i, j) = \begin{cases} 0 & \text{if } j > n \\ \text{LAS}^+(i, j + 1) & \text{if } j \leq n \text{ and } A[j] \leq A[i] \\ \max\{\text{LAS}^+(i, j + 1), 1 + \text{LAS}^-(j, j + 1)\} & \text{otherwise} \end{cases}$$

$$\text{LAS}^-(i, j) = \begin{cases} 0 & \text{if } j > n \\ \text{LAS}^-(i, j + 1) & \text{if } j \leq n \text{ and } A[j] \geq A[i] \\ \max\{\text{LAS}^-(i, j + 1), 1 + \text{LAS}^+(j, j + 1)\} & \text{otherwise} \end{cases}$$

To simplify computation, we consider two different sentinel values $A[0]$. First we set $A[0] = -\infty$ and let $\ell^+ = \text{LAS}^+(0, 1)$. Then we set $A[0] = +\infty$ and let $\ell^- = \text{LAS}^-(0, 1)$. Finally, the length of the longest alternating subsequence of A is $\max\{\ell^+, \ell^-\}$.

2
Solution:
[one of many] We define two functions:

- Let $\text{LAS}^+(i)$ denote the length of the longest alternating subsequence of $A[i \ldots n]$ that starts with $A[i]$ and whose second element (if any) is larger than $A[i]$.
- Let $\text{LAS}^-(i)$ denote the length of the longest alternating subsequence of $A[i \ldots n]$ that starts with $A[i]$ and whose second element (if any) is smaller than $A[i]$.

These two functions satisfy the following mutual recurrences:

$$\text{LAS}^+(i) = \begin{cases} 1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\ 1 + \max \{ \text{LAS}^-(j) \mid j > i \text{ and } A[j] > A[i] \} & \text{otherwise} \end{cases}$$

$$\text{LAS}^-(i) = \begin{cases} 1 & \text{if } A[j] \geq A[i] \text{ for all } j > i \\ 1 + \max \{ \text{LAS}^+(j) \mid j > i \text{ and } A[j] < A[i] \} & \text{otherwise} \end{cases}$$

We need to compute $\max_i \max \{ \text{LAS}^+(i), \text{LAS}^-(i) \}$.

To think about later:

1. Given an array $A[1 \ldots n]$ of integers, compute the length of a longest convex subsequence of A.

Solution:

Let $\text{LCS}(i, j)$ denote the length of the longest convex subsequence of $A[i \ldots n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$\text{LCS}(i, j) = 1 + \max \{ \text{LCS}(j, k) \mid j < k \leq n \text{ and } A[i] + A[k] > 2A[j] \}$$

Here we define $\max \emptyset = 0$; this gives us a working base case. The length of the longest convex subsequence is $\max_{1 \leq i < j \leq n} \text{LCS}(i, j)$.

Solution:

[with sentinels] Assume without loss of generality that $A[i] \geq 0$ for all i. (Otherwise, we can add $|n|$ to each $A[i]$, where m is the smallest element of $A[1 \ldots n]$.) Add two sentinel values $A[0] = 2M + 1$ and $A[-1] = 4M + 3$, where M is the largest element of $A[1 \ldots n]$.

Let $\text{LCS}(i, j)$ denote the length of the longest convex subsequence of $A[i \ldots n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$\text{LCS}(i, j) = 1 + \max \{ \text{LCS}(j, k) \mid j < k \leq n \text{ and } A[i] + A[k] > 2A[j] \}$$

Here we define $\max \emptyset = 0$; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of $A[1 \ldots n]$ is $\text{LCS}(-1, 0) - 2$.

On the other hand, removing $A[-1]$ and $A[0]$ from any convex subsequence of $A[-1 \ldots n]$ leaves a convex subsequence of $A[1 \ldots n]$. So the longest subsequence of $A[1 \ldots n]$ has length at least $\text{LCS}(-1, 0) - 2$. ■
Given an array $A[1..n]$, compute the length of a longest palindrome subsequence of A.

Solution:

[naive] Let $LPS(i, j)$ denote the length of the longest palindrome subsequence of $A[i..j]$. This function obeys the following recurrence:

$$LPS(i, j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
\max \left\{ LPS(i + 1, j), \ LPS(i, j - 1) \right\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
2 + LPS(i + 1, j - 1) & \text{otherwise}
\end{cases}$$

We need to compute $LPS(1, n)$.

Solution:

[with greedy optimization] Let $LPS(i, j)$ denote the length of the longest palindrome subsequence of $A[i..j]$. Before stating a recurrence for this function, we make the following useful observation.

Claim 0.1. If $i < j$ and $A[i] = A[j]$, then $LPS(i, j) = 2 + LPS(i + 1, j - 1)$.

Proof: Suppose $i < j$ and $A[i] = A[j]$. Fix an arbitrary longest palindrome subsequence S of $A[i..j]$. There are four cases to consider:

- If S uses neither $A[i]$ nor $A[j]$, then $A[i] \bullet S \bullet A[j]$ is a palindrome subsequence of $A[i..j]$ that is longer than S, which is impossible.
- Finally, S might include both $A[i]$ and $A[j]$.

In all cases, we find either a contradiction or a longest palindrome subsequence of $A[i..j]$ that uses both $A[i]$ and $A[j]$.

Claim 1 implies that the function LPS satisfies the following recurrence:

$$LPS(i, j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
\max \left\{ LPS(i + 1, j), \ LPS(i, j - 1) \right\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
2 + LPS(i + 1, j - 1) & \text{otherwise}
\end{cases}$$

We need to compute $LPS(1, n)$.

4