Solutions for Discussion 6b: Feb 25 (Fri) Version: 1.0 CS/ECE 374 A, Spring 2022

In the lecture, we have described an algorithm of Karatsuba that multiplies two n-digit integers using
O(n'83) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and
applications of this algorithm.

1 Describe an algorithm to compute the product of an n-digit number and an m-digit number, where m < n,
in O(m'83~1n) time.

Solution:

Split the larger number into [n/m| chunks, each with m digits. Multiply the smaller number by each
chunk in O(m'83) time using Karatsuba’s algorithm, and then add the resulting partial products with
appropriate shifts.

SkewMultiply(z[0 .. m —1],y[0 .. n —1]):
prod < 0
offset + 0
for i < 0 to [n/m] —1
chunk < yli-m .. (i+1) -m—1]
prod + prod + Multiply (z, chunk) - 10°™
return prod

Each call to Multiply requires O(m!83) time, and all other work within a single iteration of the main
loop requires O(m) time. Thus, the overall running time of the algorithm is O(1) + [n/m] O(m'83) =
O(m'83~1n) as required.

This is the standard method for multiplying a large integer by a single “digit” integer written in base
10™, but with each single-"digit” multiplication implemented using Karatsuba’s algorithm.

2 Describe an algorithm to compute the decimal representation of 2" in O(n'83) time. (The standard
algorithm that computes one digit at a time requires ©(n?) time.)
Solution:

We compute 2" via repeated squaring, implementing the following recurrence:

1 iftn=0
2" =< (

2n/2)2 it n > 0 is even
2. (21/21)2 if nis odd

We use Karatsuba’s algorithm to implement decimal multiplication for each square.

TwoToThe(n):
ifn=20
return 1
m <« [n/2]
z + TwoToThe(m) // recurse!
z + Multiply(z, 2) // Karatsuba
if n is odd
z + Add(z, 2)

return 2




The running time of this algorithm satisfies the recurrence T'(n) = T(|n/2]) + O(n'83). We can safely
ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the
work done at recursion depth i is O((n/2%)'83) = O(n'83/3"). Thus, the levels sums form a descending
geometric series, which is dominated by the work at level 0, so the total running time is at most O(n'83).

Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary n-bit
binary number in O(n'8%) time. (Hint: Let x = a - 2"/2 + b. Watch out for an extra log factor in the
running time.)

Solution:

Following the hint, we break the input z into two smaller numbers z = a - 2*/2 4 b; recursively convert
a and b into decimal; convert 2™/2 into decimal using the solution to problem 2; multiply a and 27/2
using Karatsuba’s algorithm; and finally add the product to b to get the final result.

Decimal(z[0 .. n — 1]):
if n < 100
use brute force
m <+ [n/2]
a<zm..n—1]
b+ z[0..m—1]
return Add(Multiply(Decimal(a), TwoToThe(m)), Decimal(b))

The running time of this algorithm satisfies the recurrence T'(n) = 27T(n/2) + O(n'83); the O(n'83)
term includes the running times of both Multiply and TwoToThe (as well as the final linear-time
addition).

The recursion tree for this algorithm is a binary tree, with 2¢ nodes at recursion depth i. Each re-
cursive call at depth i converts an n/2%-bit binary number to decimal; the non-recursive work at the
corresponding node of the recursion tree is O((n/2%)'83) = O(n!83/3%). Thus, the total work at depth
iis 20 - O(n'83/3") = O(n'83/(3/2)%). The level sums define a descending geometric series, which is
dominated by its largest term O(n'83).

Notice that if we had converted 2%/2 to decimal recursively instead of calling TwoToThe, the recurrence

would have been T'(n) = 3T (n/2) + O(n'83). Every level of this recursion tree has the same sum, so the
overall running time would be O(n'83logn).

Think about later:

4

Suppose we can multiply two n-digit numbers in O(M (n)) time. Describe an algorithm to compute the
decimal representation of an arbitrary n-bit binary number in O(M (n)logn) time.

Solution:

We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of
Karatsuba’s algorithm. Let T»(n) and T3(n) denote the running times of TwoToThe and Decimal,
respectively. We need to solve the recurrences

To(n) =To(n/2) + O(M(n)) and T3(n)=2T3(n/2)+ Ta(n) + O(M(n)).

But how can we do that when we don’t know M (n)?



For the moment, suppose M (n) = O(n¢) for some constant ¢ > 0. Since any algorithm to multiply two
n-digit numbers must read all n digits, we have M (n) = Q(n), and therefore ¢ > 1. On the other hand,
the grade-school lattice algorithm implies M(n) = O(n?), so we can safely assume ¢ < 2. With this
assumption, the recursion tree method implies

Tr(n) = Ta(n/2) + O(n°) = Ty(n) = O(n°)
Ty(n) = 2T3(n/2) + O(n°) — Ty(n) = {SEZI) BT

So in this case, we have T3(n) = O(M (n)logn) as required.

In reality, M(n) may not be a simple polynomial, but we can effectively ignore any sub-polynomial
noise using the following trick. Suppose we can write M(n) = n®- u(n) for some constant ¢ and some
arbitrary non-decreasing function p(n).

To solve the recurrence Th(n) = Th(n/2) + O(M(n)), we define a new function Th(n) = Th(n)/u(n).
Then we have

Py = R/2)  OM(n) _ Tr(n/2)  OM(n))

PO =T T T T ) Ty Ao

Here we used the inequality p(n) > wp(n/2); this the only fact about p that we actually need. The

recursion tree method implies Th(n) < O(n°), and therefore To(n) < O(n€) - u(n) = O(M(n)).

Similarly, to solve the recurrence T3(n) = 2T5(n/2) + O(M(n)), we define Ts(n) = Ts(n)/u(n), which
gives us the recurrence T3(n) < 273(n/2) + O(n). The recursion tree method implies

Ty(n) < O(nlogn) ?f c=1,
O(n®) if ¢ > 1.

In both cases, we have T3(n) = O(n¢logn), which implies that T3(n) = O(M (n)logn).



