Solutions for Discussion 4b: Feb 11 (Fri)

1. \(\{0^{2n}1^n \mid n \geq 0\} \)

 Solution:
 \(S \rightarrow \varepsilon \mid 00S1. \)

2. \(\{0^m1^n \mid m \neq 2n\} \)
 (Hint: If \(m \neq 2n \), then either \(m < 2n \) or \(m > 2n \).)

 Solution:
 To simplify notation, let \(\Delta(w) = \#(0,w) - 2\#(1,w) \). Our solution follows the following logic. Let \(w \) be an arbitrary string in this language.

 - Because \(\Delta(w) \neq 0 \), then either \(\Delta(w) > 0 \) or \(\Delta(w) < 0 \).
 - If \(\Delta(w) > 0 \), then \(w = 0^iz \) for some integer \(i > 0 \) and some suffix \(z \) with \(\Delta(z) = 0 \).
 - If \(\Delta(w) < 0 \), then \(w = x1^j \) for some integer \(j > 0 \) and some prefix \(x \) with either \(\Delta(x) = 0 \) or \(\Delta(x) = 1 \).
 - Substrings with \(\Delta = 0 \) is generated by the previous grammar; we need only a small tweak to generate substrings with \(\Delta = 1 \).

 Here is one way to encode this case analysis as a CFG. The nonterminals \(M \) and \(L \) generate all strings where the number of 0s is More or Less than twice the number of 1s, respectively. The last nonterminal generates strings with \(\Delta = 0 \) or \(\Delta = 1 \).

 \[
 \begin{align*}
 S & \rightarrow M \mid L & \{0^m1^n \mid m \neq 2n\} \\
 M & \rightarrow 0M \mid 0E & \{0^m1^n \mid m > 2n\} \\
 L & \rightarrow L1 \mid E1 & \{0^m1^n \mid m < 2n\} \\
 E & \rightarrow \varepsilon \mid 0 \mid 00E1 & \{0^m1^n \mid m = 2n \text{ or } 2n + 1\} \\

 S & \rightarrow AE \mid EB \mid FB & \{0^m1^n \mid m \neq 2n\} \\
 A & \rightarrow 0 \mid 0A & 0^+ = \{0^i \mid i \geq 1\} \\
 B & \rightarrow 1 \mid 1B & 1^+ = \{1^j \mid j \geq 1\} \\
 E & \rightarrow \varepsilon \mid 00E1 & \{0^m1^n \mid m = 2n\} \\
 F & \rightarrow 0E & \{0^m1^n \mid m = 2n + 1\} \\
 \end{align*}
 \]

 Here is a different correct solution using the same logic. We either identify a non-empty prefix of 0s or a non-empty prefix of 1s, so that the rest of the string is as “balanced” as possible. We also generate strings with \(\Delta = 1 \) using a separate non-terminal.

 \[
 \begin{align*}
 S & \rightarrow AE \mid EB \mid FB & \{0^m1^n \mid m \neq 2n\} \\
 A & \rightarrow 0 \mid 0A & 0^+ = \{0^i \mid i \geq 1\} \\
 B & \rightarrow 1 \mid 1B & 1^+ = \{1^j \mid j \geq 1\} \\
 E & \rightarrow \varepsilon \mid 00E1 & \{0^m1^n \mid m = 2n\} \\
 F & \rightarrow 0E & \{0^m1^n \mid m = 2n + 1\} \\
 \end{align*}
 \]

 Alternatively, we can separately generate all strings of the form \(0^{\text{odd}}1^* \), so that we don’t have to worry about the case \(\Delta = 1 \) separately.

 \[
 \begin{align*}
 S & \rightarrow D \mid M \mid L & \{0^m1^n \mid m \neq 2n\} \\
 D & \rightarrow 0 \mid 00D \mid D1 & \{0^m1^n \mid m \text{ is odd}\} \\
 M & \rightarrow 0M \mid 0E & \{0^m1^n \mid m > 2n\} \\
 L & \rightarrow L1 \mid E1 & \{0^m1^n \mid m < 2n \text{ and } m \text{ is even}\} \\
 E & \rightarrow \varepsilon \mid 00E1 & \{0^m1^n \mid m = 2n\} \\
 \end{align*}
 \]
Solution:

Intuitively, we can parse any string $w \in L$ as follows. First, remove the first $2k$ 0s and the last k 1s, for the largest possible value of k. The remaining string cannot be empty, and it must consist entirely of 0s, entirely of 1s, or a single 0 followed by 1s.

$$
S \rightarrow 00S1 \mid A \mid B \mid C \quad \{0^m1^n \mid m \neq 2n\}
$$

$$
A \rightarrow 0 \mid 0A
$$

$$
B \rightarrow 1 \mid 1B
$$

$$
C \rightarrow 0 \mid 0B
$$

Let's elaborate on the above, since k is maximal, $w = 0^{2k}w'/1^k$. If w' starts with 00, and ends with a 1, then we can increase k by one. As such, w' is either in $0^+ \text{ or } 1^+$. If w' contains both 0s and 1s, then it can contain only a single 0, followed potentially by 1^+. We conclude that $w' \in 0^+ + 1^+ + 01^+$.

3. $\{0,1\}^* \setminus \{0^{2n}1^n \mid n \geq 0\}$

Solution:

This language is the union of the previous language and the complement of 0^*1^*, which is $(0+1)^*10(0+1)^*$.

$$
S \rightarrow T \mid X \quad \{0,1\}^* \setminus \{0^{2n}1^n \mid n \geq 0\}
$$

$$
T \rightarrow 00T1 \mid A \mid B \mid C \quad \{0^m1^n \mid m \neq 2n\}
$$

$$
A \rightarrow 0 \mid 0A
$$

$$
B \rightarrow 1 \mid 1B
$$

$$
C \rightarrow 0 \mid 0B
$$

$$
X \rightarrow Z10Z \quad (0+1)^*10(0+1)^*
$$

$$
Z \rightarrow \varepsilon \mid 0Z \mid 1Z \quad (0+1)^*
$$

Work on these later:

4. $\{w \in \{0,1\}^* \mid \#(0,w) = 2 \cdot \#(1,w)\}$ – Binary strings where the number of 0s is exactly twice the number of 1s.

Solution:

$$
S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00.
$$

Here is a sketch of a correctness proof.

For any string w, let $\Delta(w) = \#(0,w) - 2 \cdot \#(1,w)$. Suppose w is a binary string such that $\Delta(w) = 0$. Suppose w is nonempty and has no non-empty proper prefix x such that $\Delta(x) = 0$. There are three possibilities to consider:

- Suppose $\Delta(x) > 0$ for every proper prefix x of w. In this case, w must start with 00 and end with 1. Thus, $w = 00x1$ for some string $x \in L$.
- Suppose $\Delta(x) < 0$ for every proper prefix x of w. In this case, w must start with 1 and end with 00. Let x be the shortest non-empty prefix with $\Delta(x) = 1$. Thus, $w = 1X00$ for some string $x \in L$.
- Finally, suppose $\Delta(x) > 0$ for some prefix x and $\Delta(x') < 0$ for some longer proper prefix x'. Let x' be the shortest non-empty proper prefix of w with $\Delta < 0$. Then $x' = 0y1$ for some substring y with $\Delta(y) = 0$, and thus $w = 0y1z0$ for some strings $y, z \in L$.

\[\{0, 1\}^* \setminus \{ww \mid w \in \{0, 1\}^*\}. \]

Solution:

All strings of odd length are in L.

Let w be any even-length string in L, and let $m = |w|/2$. For some index $i \leq m$, we have $w_i \neq w_{m+i}$.

Thus, w can be written as either $x1y0z$ or $x0y1z$ for some substrings x, y, z such that $|x| = i - 1$, $|y| = m - 1$, and $|z| = m - i$. We can further decompose y into a prefix of length $i - 1$ and a suffix of length $m - i$. So we can write any even-length string $w \in L$ as either $x1x'z'0z$ or $x0x'z'1z$, for some strings x, x', z, z' with $|x| = |x'| = i - 1$ and $|z| = |z'| = m - i$. Said more simply, we can divide w into two odd-length strings, one with a 0 at its center, and the other with a 1 at its center.

\[
\begin{align*}
S & \rightarrow AB \mid BA \mid A \mid B & \text{strings not of the form } ww \\
A & \rightarrow 0 \mid \Sigma \Lambda \Sigma & \text{odd-length strings with 0 at center} \\
B & \rightarrow 1 \mid \Sigma B \Sigma & \text{odd-length strings with 1 at center} \\
\Sigma & \rightarrow 0 \mid 1 & \text{single character}
\end{align*}
\]