Prove that each of the following languages is not regular.

1. \(\{0^{2n} \mid n \geq 0\} \)

Solution:
Choose \(F = \{0^{2n} \mid n \geq 0\} \).
Let \(x \) and \(y \) be two arbitrary strings of \(F \) with \(x \neq y \).
Then \(x = 0^{2i} \) and \(y = 0^{2j} \) for some non-negative integers \(i \neq j \).
Choose \(z = 0^{2i} \).
Then \(xz = 0^{2i}0^{2i} = 0^{2i+1} \in L \).
And \(yz = 0^{2i}0^{2j} = 0^{2i+2j} \notin L \), because \(i \neq j \) (since \(2^i + 2^j \) cannot be a power of 2).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

2. \(\{0^{2n}1^n \mid n \geq 0\} \)

Solution:
Choose \(F = \{0^i \mid i \geq 0\} \).
Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Choose \(z = 0^i1^i \).
Then \(xz = 0^{2i}1^i \in L \).
And \(yz = 0^{i+j}1^i \notin L \), because \(i + j \neq 2i \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

3. \(\{0^m1^n \mid m \neq 2n\} \)

Solution:
Choose \(F = \{0^i \mid i \geq 0\} \).
Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Choose \(z = 0^i1^i \).
Then \(xz = 0^{2i}1^i \notin L \).
And \(yz = 0^{i+j}1^i \in L \), because \(i + j \neq 2i \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.
Strings over \{0, 1\} where the number of 0s is exactly twice the number of 1s.

Solution:
Choose \(F = \{0^i \mid i \geq 0\} \).
Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Choose \(z = 0^i1^i \).
Then \(xz = 0^{2i}1^i \in L \).
And \(yz = 0^{i+j}1^i \not\in L \), because \(i + j \neq 2i \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Solution:
If \(L \) were regular, then the language

\[
((0 + 1)^* \setminus L) \cap 0^*1^* = \{0^m1^n \mid m \neq 2n\}
\]

would also be regular, because regular languages are closed under complement and intersection. But we just proved that \(\{0^m1^n \mid m \neq 2n\} \) is not regular in problem 3. [This proof would be worth full credit in homework or an exam, if we do not explicitly specify that you should use the fooling set method.]

Strings of properly nested parentheses \(() \), brackets \([] \), and braces \(\{\} \). For example, the string \(([]\}) \) is in this language, but the string \(([[]]) \) is not, because the left and right delimiters don’t match.

Solution:
Choose \(F = \{(^i \mid i \geq 0\} \).
Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).
Then \(x = (^i \) and \(y = (^j \) for some non-negative integers \(i \neq j \).
Choose \(z =)^i \).
Then \(xz = (^i)^i \in L \).
And \(yz = (^j)^i \not\in L \), because \(i \neq j \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Strings of the form \(w_1\#w_2\#\cdots\#w_n \) for some \(n \geq 2 \), where each substring \(w_i \) is a string in \(\{0, 1\}^* \), and some pair of substrings \(w_i \) and \(w_j \) are equal.
Solution:
Choose \(F = \{0^i \mid i \geq 0\} \).
Let \(x \) and \(y \) be arbitrary strings in \(F \) with \(x \neq y \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Choose \(z = \#0^i \).
Then \(xz = 0^i \#0^i \in L \).
And \(yz = 0^j \#0^i \notin L \), because \(i \neq j \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Extra problems

7 \(\{w \in (0 + 1)^* \mid w \text{ is the binary representation of a perfect square}\} \)

Solution:

Idea: We design our fooling set around numbers of the form \((2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 \), which has binary representation \(10^{k-2}10^{k+1} \). The argument is somewhat simpler if we further restrict \(k \) to be even.

Choose \(F = \{10^{2i}1 \mid i \geq 0\} \).
Let \(x \) and \(y \) be two distinct arbitrary strings in \(F \).
Then \(x = 10^{2i-1} \) and \(y = 10^{2j-1} \), for some positive integers \(i \neq j \). Without loss of generality, assume \(i < j \). (Otherwise, swap \(x \) and \(y \).)
Choose \(z = 0^{2i}1 \).
Then \(xz = 10^{2i-2}10^{2i+1} \) is the binary representation of \(2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2 \), and therefore \(xz \in L \).
On the other hand, \(yz = 10^{2j-2}10^{2i+1} \) is the binary representation of \(2^{2i+2j} + 2^{2i+1} + 1 \). Simple algebra gives us the inequalities

\[
(2^{i+j})^2 = 2^{2i+2j} \\
< 2^{2i+2j} + 2^{2i+1} + 1 \\
< 2^{2(i+j)} + 2^{i+1+j+1} + 1 \\
= (2^{i+j} + 1)^2.
\]

So \(2^{2i+2j} + 2^{2i+1} + 1 \) lies between two consecutive perfect squares, and thus is not a perfect square, which implies that \(yz \notin L \).
We conclude that \(F \) is a fooling set for \(L \). Because \(F \) is infinite, \(L \) cannot be regular.