
Solutions for Discussion 3b: Feb 4 (Fri) Version: 1.0 CS/ECE 374 A, Spring 2022

1 Let L be an arbitrary regular language. Prove that the language reverse(L) :=
{
wR

∣∣ w ∈ L} is regular.

Hint: Consider a DFA M that accepts L and construct a NFA that accepts reverse(L).

Solution:

Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) that

accepts reverse(L) as follows.

Q′ := Q ∪ {t} (here t is a new state not in Q)

s′ := t

A′ := {s}
δ′(t, ε) = A

∀q ∈ Q, a ∈ Σ δ′(q, a) =
{
q′ ∈ Q

∣∣ δ(q′, a) = q
}

M ′ is obtained from M by reversing all the directions of the edges, adding a new state t that becomes

the new start state that is connected via ε edges to all the original accepting states. There is a single

accepting state in M ′ which is the start state of M . To see that M ′ accepts reverse(L) you need to see

that any accepting walk of M ′ corresponds to an accepting walk of M .

Another way to show that reverse(L) is regular is via regular expressions. For any regular expression r
you can construct a regular expression r′ such that L(r′) = reverse(L) using the inductive de�nition of

regular languages. We ignore the base cases as exercise and consider the inductive cases.

� If r1 and r2 are regular expressions and r′1 and r′2 are regular expressions for the reverse languages

then the reverse for r1 + r2 is r′1 + r′2.

� For r1r2 we have r′2r
′
1.

� For (r1)∗ we have (r′1)∗.

2 Let L be an arbitrary regular language. Prove that the language insert1(L) := {x1y | xy ∈ L} is regular.
Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by inserting exactly

one 1. For example, if L = {ε,OOK!}, then insert1(L) = {1, 1OOK!, O1OK!, OO1K!, OOK1!, OOK!1}.

Solution:

Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) that

accepts insert1(L) as follows:

Q′ := Q× {before, after}
s′ := (s, before)

A′ :=
{

(q, after)
∣∣ q ∈ A}

1



δ′((q, before), a) =

{{
(δ(q, a), before), (q, after)

}
if a = 1{

(δ(q, a), before)
}

otherwise

δ′((q, after), a) =
{

(δ(q, a), after)
}

M ′ nondeterministically chooses a 1 in the input string to ignore, and simulates M running on the rest

of the input string.

� The state (q, before) means (the simulation of) M is in state q and M ′ has not yet skipped over a

1.

� The state (q, after) means (the simulation of) M is in state q and M ′ has already skipped over a

1.

Solutions for extra problems

3 Let L be an arbitrary regular language. Prove that the language delete1(L) := {xy | x1y ∈ L} is regular.
Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L by deleting exactly

one 1. For example, if L = {101101, 00, ε}, then delete1(L) = {01101, 10101, 10110}.

Solution:

Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) with

ε-transitions that accepts delete1(L) as follows:

Q′ := Q× {before, after}
s′ := (s, before)

A′ := {(q, after)} q ∈ A

δ′((q, before), ε) =
{

(δ(q, 1), after)
}

δ′((q, after), ε) = ∅

δ′((q, before), a) =
{

(δ(q, a), before)
}

δ′((q, after), a) =
{

(δ(q, a), after)
}

M ′ simulates M , but inserts a single 1 into M 's input string at a nondeterministically chosen location.

� The state (q, before) means (the simulation of) M is in state q and M ′ has not yet inserted a 1.

� The state (q, after) means (the simulation of) M is in state q and M ′ has already inserted a 1.

2



4 Consider the following recursively de�ned function on strings:

stutter(w) :=

{
ε if w = ε

aa � stutter(x) if w = ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

� stutter(PRESTO) = PPRREESSTTOO

� stutter(HOCUS�POCUS) = HHOOCCUUSS��PPOOCCUUSS

Let L be an arbitrary regular language.

4.A. Prove that the language stutter−1(L) := {w | stutter(w) ∈ L} is regular.

Solution:

Let M = (Σ, Q, s, A, δ) be a DFA that accepts L.

We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that accepts stutter−1(L) as follows:

Q′ = Q

s′ = s

A′ = A

δ′(q, a) = δ(δ(q, a), a)

M ′ reads its input string w and simulatesM running on stutter(w). Each timeM ′ reads a symbol,

the simulation of M reads two copies of that symbol.

4.B. Prove that the language stutter(L) := {stutter(w) | w ∈ L} is regular.

Solution:

Let M = (Σ, Q, s, A, δ) be a DFA that accepts L.

We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that accepts stutter(L) as follows:

Q′ = Q× ({•} ∪ Σ) ∪ {fail} for some • 6∈ Σ

s′ = (s, •)
A′ = {(q, •)} q ∈ A

δ′((q, •), a) = (q, a)

δ′((q, a), b) =

{
(δ(q, a), •) if a = b

fail if a 6= b

δ′(fail, a) = fail

M ′ reads the input string stutter(w) and simulates M running on input w.

� State (q, •) meansM ′ has just read an even symbol in stutter(w), soM should ignore the next

symbol (if any).

� For any symbol a ∈ Σ, state (q, a) means M ′ has just read an odd symbol in stutter(w), and
that symbol was a. If the next symbol is an a, then M should transition normally; otherwise,

the simulation should fail.

� The state fail means M ′ has read two successive symbols that should have been equal but

were not; the input string is not stutter(w) for any string w.

3



Solution:

Let R be an arbitrary regular expression. We recursively construct a regular expression stutter(R)
as follows:

stutter(R) :=



∅ if R = ∅
stutter(w) if R = w for some string w ∈ Σ∗

stutter(A) + stutter(B) if R = A+B for some regular expressions A and B

stutter(A) stutter(B) if R = AB for some regular expressions A and B

(stutter(A))∗ if R = A∗ for some regular expression A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for arbitrary lan-

guages A and B:

� stutter(A ∪B) = stutter(A) ∪ stutter(B)

� stutter(A �B) = stutter(A) � stutter(B)

� stutter(A∗) = stutter(A)∗

These identities can all be proved by inductive de�nition-chasing, after which the claim

L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of the induction proofs

as an exercise for(((((((((
a future semester(((((an exam the reader.

Equivalently, we can directly transform R into stutter(R) by replacing every explicit string w ∈ Σ∗

inside R with stutter(w) (with additional parentheses if necessary). For example:

stutter
(
(1 + ε)(01)∗(0 + ε) + 0∗

)
= (11 + ε)(0011)∗(00 + ε) + (00)∗

Although this may look simpler, actually proving that it works requires the same induction argu-

ments.

5 Consider the following recursively de�ned function on strings:

evens(w) :=


ε if w = ε

ε if w = a for some symbol a

b · evens(x) if w = abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

� evens(EXPELLIARMUS) = XELAMS

� evens(AV ADA�KEDAV RA) = V D�EAR.

Once again, let L be an arbitrary regular language.

5.A. Prove that the language evens−1(L) := {w | evens(w) ∈ L} is regular.

Solution:

4



LetM = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an DFAM ′ = (Σ, Q′, s′, A′, δ′) that
accepts evens−1(L) as follows:

Q′ = Q× {0, 1}
s′ = (s, 0)

A′ = A× {0, 1}

δ′((q, 0), a) = (q, 1)

δ′((q, 1), a) = (δ(q, a), 0)

M ′ reads its input string w and simulates M running on evens(w).

� State (q, 0) means M ′ has just read an even symbol in w, so M should ignore the next symbol

(if any).

� State (q, 1) means M ′ has just read an odd symbol in w, so M should read the next symbol

(if any).

5.B. Prove that the language evens(L) := {evens(w) | w ∈ L} is regular.

Solution:

LetM = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFAM ′ = (Σ, Q′, s′, A′, δ′) that
accepts evens(L) as follows:

Q′ = Q

s′ = s

A′ = A ∪
{
q ∈ Q

∣∣ δ(q, a) ∩A 6= ∅ for some a ∈ Σ
}

δ′(q, a) =
⋃
b∈Σ

{
δ
(
δ(q, b), a

)}
M ′ reads the input string evens(w) and simulates M running on string w, while nondeterministi-

cally guessing the missing symbols in w.

� When M ′ reads the symbol a from evens(w), it guesses a symbol b ∈ Σ and simulates M
reading ba from w.

� When M ′ �nishes evens(w), it guesses whether w has even or odd length, and in the odd case,

it guesses the last character of w.

5


