1 Let L be an arbitrary regular language. Prove that the language reverse $(L):=\left\{w^{R} \mid w \in L\right\}$ is regular. Hint: Consider a DFA M that accepts L and construct a NFA that accepts reverse (L).

Solution:

Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts reverse (L) as follows.

$$
\begin{aligned}
Q^{\prime} & :=Q \cup\{t\} \quad \text { (here } t \text { is a new state not in } Q \text {) } \\
s^{\prime} & :=t \\
A^{\prime} & :=\{s\} \\
\delta^{\prime}(t, \epsilon) & =A \\
\forall q \in Q, a \in \Sigma \quad \delta^{\prime}(q, a) & =\left\{q^{\prime} \in Q \mid \delta\left(q^{\prime}, a\right)=q\right\}
\end{aligned}
$$

M^{\prime} is obtained from M by reversing all the directions of the edges, adding a new state t that becomes the new start state that is connected via ϵ edges to all the original accepting states. There is a single accepting state in M^{\prime} which is the start state of M. To see that M^{\prime} accepts reverse (L) you need to see that any accepting walk of M^{\prime} corresponds to an accepting walk of M.

Another way to show that reverse (L) is regular is via regular expressions. For any regular expression r you can construct a regular expression r^{\prime} such that $L\left(r^{\prime}\right)=\operatorname{reverse}(L)$ using the inductive definition of regular languages. We ignore the base cases as exercise and consider the inductive cases.

- If r_{1} and r_{2} are regular expressions and r_{1}^{\prime} and r_{2}^{\prime} are regular expressions for the reverse languages then the reverse for $r_{1}+r_{2}$ is $r_{1}^{\prime}+r_{2}^{\prime}$.
- For $r_{1} r_{2}$ we have $r_{2}^{\prime} r_{1}^{\prime}$.
- For $\left(r_{1}\right)^{*}$ we have $\left(r_{1}^{\prime}\right)^{*}$.

2 Let L be an arbitrary regular language. Prove that the language insert $1(L):=\{x 1 y \mid x y \in L\}$ is regular. Intuitively, $\operatorname{insert1}(L)$ is the set of all strings that can be obtained from strings in L by inserting exactly one 1. For example, if $L=\{\varepsilon, O O K!\}$, then $\operatorname{insert1}(L)=\{1,1 O O K!, O 1 O K!, O O 1 K!, O O K 1!, O O K!1\}$.

Solution:

Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts insert1 (L) as follows:

$$
\begin{aligned}
Q^{\prime} & :=Q \times\{\text { before, after }\} \\
s^{\prime} & :=(s, \text { before }) \\
A^{\prime} & :=\{(q, \text { after }) \mid q \in A\}
\end{aligned}
$$

$$
\begin{gathered}
\delta^{\prime}((q, \text { before }), a)= \begin{cases}\{(\delta(q, a), \text { before }),(q, \text { after })\} & \text { if } a=1 \\
\{(\delta(q, a), \text { before })\} & \text { otherwise }\end{cases} \\
\delta^{\prime}((q, \text { after }), a)=\{(\delta(q, a), \text { after })\}
\end{gathered}
$$

M^{\prime} nondeterministically chooses a 1 in the input string to ignore, and simulates M running on the rest of the input string.

- The state (q, before) means (the simulation of) M is in state q and M^{\prime} has not yet skipped over a 1.
- The state (q, after) means (the simulation of) M is in state q and M^{\prime} has already skipped over a 1.

Solutions for extra problems

3 Let L be an arbitrary regular language. Prove that the language delete $1(L):=\{x y \mid x 1 y \in L\}$ is regular. Intuitively, delete $1(L)$ is the set of all strings that can be obtained from strings in L by deleting exactly one 1. For example, if $L=\{101101,00, \varepsilon\}$, then $\operatorname{delete} 1(L)=\{01101,10101,10110\}$.

Solution:

Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ with ε-transitions that accepts delete1(L) as follows:

$$
\begin{aligned}
Q^{\prime} & :=Q \times\{\text { before, after }\} \\
s^{\prime} & :=(s, \text { before }) \\
A^{\prime} & :=\{(q, \text { after })\} q \in A \\
\delta^{\prime}((q, \text { before }), \varepsilon) & =\{(\delta(q, 1), \text { after })\} \\
\delta^{\prime}((q, \text { after }), \varepsilon) & =\varnothing \\
\delta^{\prime}((q, \text { before }), a) & =\{(\delta(q, a), \text { before })\} \\
\delta^{\prime}((q, \text { after }), a) & =\{(\delta(q, a), \text { after })\}
\end{aligned}
$$

M^{\prime} simulates M, but inserts a single 1 into M 's input string at a nondeterministically chosen location.

- The state (q, before) means (the simulation of) M is in state q and M^{\prime} has not yet inserted a 1 .
- The state (q, after) means (the simulation of) M is in state q and M^{\prime} has already inserted a 1 .

4 Consider the following recursively defined function on strings:

$$
\operatorname{stutter}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ a a \bullet \operatorname{stutter}(x) & \text { if } w=a x \text { for some symbol } a \text { and some string } x\end{cases}
$$

Intuitively, $\operatorname{stutter}(w)$ doubles every symbol in w. For example:

- $\operatorname{stutter}($ PRESTO $)=$ PPRREESSTTOO
- $\operatorname{stutter}(H O C U S \square P O C U S)=H H O O C C U U S S \square P P O O C C U U S S$

Let L be an arbitrary regular language.
4.A. Prove that the language stutter $^{-1}(L):=\{w \mid \operatorname{stutter}(w) \in L\}$ is regular.

Solution:

Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L.
We construct an DFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts stutter $^{-1}(L)$ as follows:

$$
\begin{aligned}
Q^{\prime} & =Q \\
s^{\prime} & =s \\
A^{\prime} & =A \\
\delta^{\prime}(q, a) & =\delta(\delta(q, a), a)
\end{aligned}
$$

M^{\prime} reads its input string w and simulates M running on $\operatorname{stutter}(w)$. Each time M^{\prime} reads a symbol, the simulation of M reads two copies of that symbol.
4.B. Prove that the language $\operatorname{stutter}(L):=\{\operatorname{stutter}(w) \mid w \in L\}$ is regular.

Solution:

Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L.
We construct an DFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts $\operatorname{stutter}(L)$ as follows:

$$
\begin{aligned}
Q^{\prime} & =Q \times(\{\bullet\} \cup \Sigma) \cup\{\text { fail }\} \quad \text { for some } \bullet \notin \Sigma \\
s^{\prime} & =(s, \bullet) \\
A^{\prime} & =\{(q, \bullet)\} q \in A \\
\delta^{\prime}((q, \bullet), a) & =(q, a) \\
\delta^{\prime}((q, a), b) & = \begin{cases}(\delta(q, a), \bullet) & \text { if } a=b \\
\text { fail } & \text { if } a \neq b\end{cases} \\
\delta^{\prime}(f a i l, a) & =\text { fail }
\end{aligned}
$$

M^{\prime} reads the input string $\operatorname{stutter}(w)$ and simulates M running on input w.

- State (q, \bullet) means M^{\prime} has just read an even symbol in $\operatorname{stutter}(w)$, so M should ignore the next symbol (if any).
- For any symbol $a \in \Sigma$, state (q, a) means M^{\prime} has just read an odd symbol in $\operatorname{stutter}(w)$, and that symbol was a. If the next symbol is an a, then M should transition normally; otherwise, the simulation should fail.
- The state fail means M^{\prime} has read two successive symbols that should have been equal but were not; the input string is not $\operatorname{stutter}(w)$ for any string w.

Solution:

Let R be an arbitrary regular expression. We recursively construct a regular expression stutter (R) as follows:

$$
\operatorname{stutter}(R):= \begin{cases}\varnothing & \text { if } R=\varnothing \\ \text { stutter }(w) & \text { if } R=w \text { for some string } w \in \Sigma^{*} \\ \operatorname{stutter}(A)+\operatorname{stutter}(B) & \text { if } R=A+B \text { for some regular expressions } A \text { and } B \\ \operatorname{stutter}(A) \text { stutter }(B) & \text { if } R=A B \text { for some regular expressions } A \text { and } B \\ (\operatorname{stutter}(A))^{*} & \text { if } R=A^{*} \text { for some regular expression } A\end{cases}
$$

To prove that $L(\operatorname{stutter}(R))=\operatorname{stutter}(L(R))$, we need the following identities for arbitrary languages A and B :

- $\operatorname{stutter}(A \cup B)=\operatorname{stutter}(A) \cup \operatorname{stutter}(B)$
- $\operatorname{stutter}(A \bullet B)=\operatorname{stutter}(A) \bullet \operatorname{stutter}(B)$
- $\quad \operatorname{stutter}\left(A^{*}\right)=\operatorname{stutter}(A)^{*}$

These identities can all be proved by inductive definition-chasing, after which the claim $L(\operatorname{stutter}(R))=\operatorname{stutter}(L(R))$ follows by induction. We leave the details of the induction proofs as an exercise for a future semester an exam the reader.
Equivalently, we can directly transform R into stutter (R) by replacing every explicit string $w \in \Sigma^{*}$ inside R with stutter (w) (with additional parentheses if necessary). For example:

$$
\operatorname{stutter}\left((1+\varepsilon)(01)^{*}(0+\varepsilon)+0^{*}\right)=(11+\varepsilon)(0011)^{*}(00+\varepsilon)+(00)^{*}
$$

Although this may look simpler, actually proving that it works requires the same induction arguments.

5 Consider the following recursively defined function on strings:

$$
\operatorname{evens}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ \varepsilon & \text { if } w=a \text { for some symbol } a \\ b \cdot \operatorname{evens}(x) & \text { if } w=a b x \text { for some symbols } a \text { and } b \text { and some string } x\end{cases}
$$

Intuitively, evens (w) skips over every other symbol in w. For example:

- evens $(E X P E L L I A R M U S)=X E L A M S$
- $\operatorname{evens}(A V A D A \square K E D A V R A)=V D \square E A R$.

Once again, let L be an arbitrary regular language.
5.A. Prove that the language evens ${ }^{-1}(L):=\{w \mid \operatorname{evens}(w) \in L\}$ is regular.

Solution:

Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an DFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts evens ${ }^{-1}(L)$ as follows:

$$
\begin{aligned}
Q^{\prime} & =Q \times\{0,1\} \\
s^{\prime} & =(s, 0) \\
A^{\prime} & =A \times\{0,1\} \\
\delta^{\prime}((q, 0), a) & =(q, 1) \\
\delta^{\prime}((q, 1), a) & =(\delta(q, a), 0)
\end{aligned}
$$

M^{\prime} reads its input string w and simulates M running on evens (w).

- State $(q, 0)$ means M^{\prime} has just read an even symbol in w, so M should ignore the next symbol (if any).
- State ($q, 1$) means M^{\prime} has just read an odd symbol in w, so M should read the next symbol (if any).
5.B. Prove that the language $\operatorname{evens}(L):=\{\operatorname{evens}(w) \mid w \in L\}$ is regular.

Solution:

Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts $\operatorname{evens}(L)$ as follows:

$$
\begin{aligned}
Q^{\prime} & =Q \\
s^{\prime} & =s \\
A^{\prime} & =A \cup\{q \in Q \mid \delta(q, a) \cap A \neq \varnothing \text { for some } a \in \Sigma\} \\
\delta^{\prime}(q, a) & =\bigcup_{b \in \Sigma}\{\delta(\delta(q, b), a)\}
\end{aligned}
$$

M^{\prime} reads the input string $\operatorname{evens}(w)$ and simulates M running on string w, while nondeterministically guessing the missing symbols in w.

- When M^{\prime} reads the symbol a from $\operatorname{evens}(w)$, it guesses a symbol $b \in \Sigma$ and simulates M reading $b a$ from w.
- When M^{\prime} finishes evens (w), it guesses whether w has even or odd length, and in the odd case, it guesses the last character of w.

