Solutions for Discussion 3b: Feb 4 (Fri) Version: 1.0 CS/ECE 374 A, Spring 2022

1 Let L be an arbitrary regular language. Prove that the language reverse(L) := {wR ‘ w e L} is regular.
Hint: Consider a DFA M that accepts L and construct a NFA that accepts reverse(L).

Solution:

Let M = (£,Q,s,A,0) be a DFA that accepts L. We construct an NFA M’ = (X,Q’,s', A’,§") that
accepts reverse(L) as follows.

Q' :=QU{t} (heretis anew state not in Q)

si=t
A= {s}
§(t,e)=A

VgeQ,aeX §(qa)={d Q]| a)=q}

M’ is obtained from M by reversing all the directions of the edges, adding a new state ¢ that becomes
the new start state that is connected via e edges to all the original accepting states. There is a single
accepting state in M’ which is the start state of M. To see that M’ accepts reverse(L) you need to see
that any accepting walk of M’ corresponds to an accepting walk of M.

Another way to show that reverse(L) is regular is via regular expressions. For any regular expression r
you can construct a regular expression ' such that L(r’) = reverse(L) using the inductive definition of
regular languages. We ignore the base cases as exercise and consider the inductive cases.

e If r; and 7o are regular expressions and] and 75 are regular expressions for the reverse languages
then the reverse for r1 + ro is 7} + ré.

e For riry we have rhr].

e For (r1)* we have (r})*.

2 Let L be an arbitrary regular language. Prove that the language insertl(L) := {xly | zy € L} is regular.

Intuitively, insertl(L) is the set of all strings that can be obtained from strings in L by inserting exactly
one 1. For example, if L = {e, OOK!}, then insertl(L) = {1, 100K!,O10K!,O01K!,OO0K1!,O0K!1}.

Solution:

Let M = (£,Q,s,A,0) be a DFA that accepts L. We construct an NFA M’ = (X,Q’,s’, A’,§’) that
accepts insertl(L) as follows:

Q' := Q x {before, after}
s’ := (s, before)

A":={(q, after) | g € A}

' _ J{(8(g, a), before), (q, after)} ifa=1
Tabefore).a) = {{(5(‘17 a), before)} otherwise

&' ((g; after),a) = {(0(q, a), after)}

M’ nondeterministically chooses a 1 in the input string to ignore, and simulates M running on the rest
of the input string.

e The state (g, before) means (the simulation of) M is in state ¢ and M’ has not yet skipped over a
1.

e The state (¢, after) means (the simulation of) M is in state ¢ and M’ has already skipped over a
1.

Solutions for extra problems

Let L be an arbitrary regular language. Prove that the language deletel(L) := {zy | 1y € L} is regular.

Intuitively, deletel(L) is the set of all strings that can be obtained from strings in L by deleting exactly
one 1. For example, if L = {101101,00, e}, then deletel(L) = {01101,10101,10110}.

Solution:

Let M = (%,Q,s,A,0) be a DFA that accepts L. We construct an NFA M’ = (X,Q’,s', A’,¢") with
e-transitions that accepts deletel(L) as follows:

Q' := Q x {before, after}

s’ := (s, before)

A= {(g,after)} g € A
q, before),e) = {(3(q, 1), after) }

&'()
(¢, after),)
)
)

5/
5 (
5/

(
(

q, before), a

%)
({(6(q,a), before) }
((q, after),a) = {(6(q, a), after) }

M’ simulates M, but inserts a single 1 into M’s input string at a nondeterministically chosen location.

e The state (g, before) means (the simulation of) M is in state ¢ and M’ has not yet inserted a 1.
e The state (g, after) means (the simulation of) M is in state ¢ and M’ has already inserted a 1.

4 Consider the following recursively defined function on strings:
€ itw=e
stutter(w) = . .
aa e stutter(x) if w = ax for some symbol a and some string =
Intuitively, stutter(w) doubles every symbol in w. For example:

o stutter(PRESTO) = PPRREESSTTOO
o stutter(HOCUSOPOCUS) = HHOOCCUUSSIIPPOOCCUUSS

Let L be an arbitrary regular language.
4.A. Prove that the language stutter ! (L) := {w | stutter(w) € L} is regular.

Solution:
Let M = (3,Q,s, A, d) be a DFA that accepts L.
We construct an DFA M’ = (3,Q’, s, A’, ") that accepts stutter (L) as follows:

Q'=Q
s=s
A=A

§'(g,a) = 6(5(q, a),a)

M’ reads its input string w and simulates M running on stutter(w). Each time M’ reads a symbol,
the simulation of M reads two copies of that symbol.

4.B. Prove that the language stutter(L) := {stutter(w) | w € L} is regular.

Solution:
Let M = (X%,Q, s, A, d) be a DFA that accepts L.
We construct an DFA M' = (2,Q’, ', A’,¢') that accepts stutter(L) as follows:

Q =Q x ({o} UX) U {fail} for some o &%
s’ = (s,e)

A'={(q,9)}qe A

5/((% .), (I) = (q’ CL)
!) (6(q,a),e) ifa=10b
e {fail ifa+b
&' (fail, a) = fasl

M’ reads the input string stutter(w) and simulates M running on input w.
e State (¢, ®) means M’ has just read an even symbol in stutter(w), so M should ignore the next
symbol (if any).

e For any symbol a € X, state (¢,a) means M’ has just read an odd symbol in stutter(w), and

that symbol was a. If the next symbol is an a, then M should transition normally; otherwise,
the simulation should fail.

e The state fail means M’ has read two successive symbols that should have been equal but
were not; the input string is not stutter(w) for any string w.

Solution:

Let R be an arbitrary regular expression. We recursively construct a regular expression stutter(R)
as follows:

16 tR=0
stutter(w) if R = w for some string w € ¥*

stutter(R) := < stutter(A) + stutter(B) if R = A+ B for some regular expressions A and B
stutter(A) stutter(B) if R = A B for some regular expressions A and B
(stutter(A))* if R = A* for some regular expression A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for arbitrary lan-
guages A and B:

e stulter(AU B) = stutter(A) U stutter(B)

e stutter(A e B) = stutter(A) e stutter(B)

o stutter(A*) = stutter(A)*

These identities can all be proved by inductive definition-chasing, after which the claim

L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of the induction proofs
as an exercise for a I mester an exam the reader.

Equivalently, we can directly transform R into stutter(R) by replacing every explicit string w € X*
inside R with stutter(w) (with additional parentheses if necessary). For example:

stutter((1 +¢)(01)*(04+¢€) + 0*) = (114 ¢€)(0011)*(00 + €) + (00)*

Although this may look simpler, actually proving that it works requires the same induction argu-
ments.

9 Consider the following recursively defined function on strings:

€ ifw=e
evens(w) 1= < & if w = a for some symbol a
b evens(x) if w = abx for some symbols a and b and some string =

Intuitively, evens(w) skips over every other symbol in w. For example:

evens(EXPELLIARMUS) = XELAMS
evens(AVADATKEDAV RA) = VDOEAR.

Once again, let L be an arbitrary regular language.

5.A. Prove that the language evens™ (L) := {w | evens(w) € L} is regular.

Solution:

Let M = (%,Q,s, A,) be a DFA that accepts L. We construct an DFA M’ = (X, Q’, s', A’, ') that
accepts evens (L) as follows:

QI:Q X {071}
s’ = (s,0)
A= Ax{0,1}

8((g,0),a) = (g, 1)
8((g,1),a) = (6(g,a),0)

M’ reads its input string w and simulates M running on evens(w).
e State (¢,0) means M’ has just read an even symbol in w, so M should ignore the next symbol
(if any).
e State (¢, 1) means M’ has just read an odd symbol in w, so M should read the next symbol
(if any).

5.B. Prove that the language evens(L) := {evens(w) | w € L} is regular.

Solution:

Let M = (X,Q, s, A,d) be a DFA that accepts L. We construct an NFA M’ = (3, Q’,s’, A’,) that
accepts evens(L) as follows:

Q=Q
s'=3s

A'=AU{qeQ|d(qga)N A+ for some a € X}
§(q,a) = U {6((5((], b),a)}

bex

M’ reads the input string evens(w) and simulates M running on string w, while nondeterministi-
cally guessing the missing symbols in w.

e When M’ reads the symbol a from evens(w), it guesses a symbol b € 3 and simulates M

reading ba from w.

e When M’ finishes evens(w), it guesses whether w has even or odd length, and in the odd case,

it guesses the last character of w.

