Problem 10.1: Consider the following geometric matching problem: Given a set \(A \) of \(n \) points and a set \(B \) of \(n \) points in 2D, find a set of \(n \) pairs \(S = \{(a_1, b_1), \ldots, (a_n, b_n)\} \), with \(\{a_1, \ldots, a_n\} = A \) and \(\{b_1, \ldots, b_n\} = B \), minimizing \(f(S) = \sum_{i=1}^{n} d(a_i, b_i) \). Here, \(d(a_i, b_i) \) denotes the Euclidean distance between \(a_i \) and \(b_i \) (which you may assume can be computed in \(O(1) \) time).

Assume that all points in \(A \) have \(y \)-coordinate equal to 0 and all points in \(B \) have \(y \)-coordinate equal to 1. (Thus, all points lie on two horizontal lines.) The points are not sorted. See the example below, which shows a solution that is definitely not optimal.

![Example](image.png)

(a) (20 pts) Consider the following greedy strategy: pick a pair \((a, b) \in A \times B\) minimizing \(d(a, b) \); then remove \(a \) from \(A \) and \(b \) from \(B \), and repeat. Give a counterexample showing that this algorithm does not always give an optimal solution.

(b) (40 pts) Let \(a \) be the point in \(A \) with the smallest \(x \)-coordinate. Let \(b \) be the point in \(B \) with the smallest \(x \)-coordinate. Consider a solution \(S \) in which \(a \) is paired with some point \(b' \neq b \), and \(b \) is paired with some point \(a' \neq a \). Prove that the solution \(S \) can be modified to obtain a new solution \(S' \) with \(f(S') < f(S) \).

(Hint: the triangle inequality\(^1\) might be useful.)

(c) (40 pts) Now give a correct greedy algorithm to solve the problem. (The correctness should follow from (b).) Analyze the running time.

\(^1\)\(d(p, q) \leq d(p, z) + d(z, q) \) for any points \(p, q, z \).
Problem 10.2: We are given an unweighted undirected connected graph \(G = (V, E) \) with \(n \) vertices and \(m \) edges (with \(m \geq n - 1 \)). We are also given two vertices \(s, t \in V \) and an ordering of the edges \(e_1, \ldots, e_m \in E \). Suppose the edges \(e_1, \ldots, e_m \) are deleted one by one in that order. We want to determine the first time when \(s \) and \(t \) become disconnected. In other words, we want to find the smallest index \(j \) such that \(s \) and \(t \) are not connected in the graph \(G_j = (V, E - \{e_1, \ldots, e_j\}) \).

A naive approach to solve this problem is to run BFS/DFS on \(G_j \) for each \(j = 1, \ldots, m \), but this would require \(O(mn) \) time. You will investigate a more efficient algorithm:

(a) (80 pts) Define a weighted graph \(G' \) with the same vertices and edges as \(G \), where edge \(e_i \) is given weight \(-i \). Let \(T \) be the minimum spanning tree of \(G' \). Let \(\pi \) be the path from \(s \) to \(t \) in \(T \). Let \(j^* \) be the smallest index such that \(e_{j^*} \) is in \(\pi \). Prove that the answer to the above problem is exactly \(j^* \).

(b) (20 pts) Following the approach in (a), analyze the running time needed to compute \(j^* \).

Problem 10.3: Consider the following search problem:

Max-Disjoint-Triples:

Input: a set \(S \) of \(n \) positive integers and an integer \(L \).

Output: pairwise disjoint triples \(\{a_1, b_1, c_1\}, \ldots, \{a_k, b_k, c_k\} \subseteq S \), maximizing the number of triples \(k^* \), such that \(a_i + b_i + c_i \leq L \) for each \(i \).

For example, if \(S = \{3, 10, 29, 30, 35, 55, 70, 83, 90\} \) and \(L = 100 \), an optimal solution is \(\{3, 10, 83\}, \{29, 30, 35\} \), with two triples (there is no solution with three triples).

Consider the following decision problem:

Disjoint-Triples-Decision:

Input: a set \(S \) of \(n \) positive integers, an integer \(L \), and an integer \(k \).

Output: True iff there exist \(k \) pairwise disjoint triples \(\{a_1, b_1, c_1\}, \ldots, \{a_k, b_k, c_k\} \subseteq S \), such that \(a_i + b_i + c_i \leq L \) for each \(i \).

Prove that **Max-Disjoint-Triples** has a polynomial-time algorithm iff **Disjoint-Triples-Decision** has a polynomial-time algorithm.

(Note: One direction should be easy. For the other direction, see lab 12b for examples of this type of question. In **Max-Disjoint-Triples**, the output is not the optimal value \(k^* \) but an optimal set of triples, although it may be helpful to give a subroutine to compute the optimal value \(k^* \) as a first step, as in the lab examples.)

\(^2\)Oops, I meant \(O(m^2) \).