1. Recall that a Turing Machine (TM) M decides a language L if on any input string w the machine M halts in an accept state if $w \in L$ and in a reject state if $w \notin L$. In other words M is an algorithm for deciding membership in L. Note that we do not have any upper bound on the running time of M. We say that L is decidable if there is a TM M that decides L. The purpose of this problem is to show that decidable languages are closed under basic operations.

- Show that if L_1, L_2 are decidable then $L_1 \cap L_2$ and $L_1 \cup L_2$ are decidable.

Solution: We will assume access to two sub-routines called $\text{IsStringIn} L_1()$ and $\text{IsStringIn} L_2()$ that are decision procedures for L_1 and L_2 respectively. The following simple algorithm takes as input a string w and correctly checks whether $w \in L_1 \cap L_2$. The correctness is easy and the fact that it always terminates follows from the fact that we are assuming that $\text{IsStringIn} L_1()$ and $\text{IsStringIn} L_2()$ are also algorithms that always terminate on their input.

$$\text{IsStrIn} L_1 \cap L_2(w) :$$
if ($\text{IsStringIn} L_1(w)$ and $\text{IsStringIn} L_2(w)$) then
 return YES
else
 return NO

For union the algorithm simply checks whether the input string w is in at least one of the two languages.

$$\text{IsStrIn} L_1 \cup L_2(w) :$$
if ($\text{IsStringIn} L_1(w)$ or $\text{IsStringIn} L_2(w)$) then
 return YES
else
 return NO

- Show that if L_1 and L_2 are decidable then L_1L_2 is decidable (concatenation).

Solution: As before, we assume access to two sub-routines called $\text{IsStringIn} L_1()$ and $\text{IsStringIn} L_2()$. A string $w \in L_1 \cdot L_2$ iff $w = xy$ where $x \in L_1$ and $y \in L_2$. Note that x, y can be ϵ. For a string $w = a_1a_2...a_n$ of length $n \geq 1$ and indices $1 \leq i \leq j \leq n$ we will use the notation $w[i..j]$ to denote the substring $a_i..a_j$ of w.

$$\text{IsStrIn} L_1 \cdot L_2(w) :$$
if ($\text{IsStringIn} L_1(\epsilon)$ and $\text{IsStringIn} L_2(w)$) then
 return YES
else if ($\text{IsStringIn} L_1(w)$ and $\text{IsStringIn} L_2(\epsilon)$) then
 return YES
else
 $n \leftarrow |w|$
 for ($i = 1$ to n) do
 if ($\text{IsStringIn} L_1(w[1..i])$ and $\text{IsStringIn} L_2(w[i + 1..n])$)
 return YES
 return NO
Show that if L_1 is decidable then L_1^* is decidable.

Solution: Recall that $\epsilon \in L_1^*$ for any L_1. Further, a string w with $|w| \geq 1$ is in L_1^* iff $w = w_1w_2\ldots w_k$ for some k such that for each $1 \leq i \leq k$, $w_i \in L_1$ and $|w_i| \geq 1$. Call a split of w into $w_1w_2\ldots w_k$ a non-trivial split if $|w_i| \geq 1$ for each i. Then it is easy to see that the number of non-trivial splits is finite. In fact there are exactly $2^{|w|-1}$ valid splits; each valid split correspond to choosing for each $1 \leq i < |w|$ whether to add a split after the i'th character or not. It is easy to enumerate them. We can thus write the following high-level algorithm to check if $w \in L_1^*$.

```plaintext
IsStrInL1*(w):
  if (w = \epsilon) return YES
  Else
    for each non-trivial split $w_1w_2\ldots w_k$ of $w$ do
      flag ← True
      for (i = 1 to k)
        if not IsStringInL1(w_i)
          flag ← False
          BREAK
      if (flag = True) return YES
  return NO
```

One can write the above more elegantly as a recursive program to avoid the explicit enumeration step.

```plaintext
IsStrInL1*(w):
  if (w = \epsilon) return YES
  Else
    n ← |w|
    for (i = 1 to n) do
      if (IsStringInL1(w[1..i]) and IsStrInL1*(w[i+1..n]) ) return YES
    return NO
```

Solution: Letting $\text{IsWord}(\cdot)$ be a decision procedure for L_1, the text segmentation problem discussed in Section 2.5 of Jeff’s textbook is exactly the problem of testing if a string is in L_1^*, so we can use the algorithm presented in the section.

Rubric:

- **10 points.** 3 points each for the first two parts and 4 points for the last part.
 - -1 for minor errors
2. Suppose you are given \(k \) sorted arrays \(A_1, A_2, \ldots, A_k \) each of which has \(n \) numbers. Assume that all numbers in the arrays are distinct. You would like to merge them into single sorted array \(A \) of \(kn \) elements. Recall that you can merge two sorted arrays of sizes \(n_1 \) and \(n_2 \) into a sorted array in \(O(n_1 + n_2) \) time.

- Use a divide and conquer strategy to merge the sorted arrays in \(O(nk \log k) \) time. To prove the correctness of the algorithm you can assume a routine to merge two sorted arrays.

Solution: We will divide the problem of merging \(k \) sorted arrays \(A_1, \ldots, A_k \), each of size \(n \), as follows.

- Merge \(\lceil k/2 \rceil \) sorted arrays \(A_1, \ldots, A_{\lceil k/2 \rceil} \) into a single sorted array \(B_1 \).
- Merge \(\lceil k/2 \rceil \) sorted arrays \(A_{\lceil k/2 \rceil + 1}, \ldots, A_k \) into a single sorted array \(B_2 \).

We can recursively solve the above two problems and merge \(B_1 \) and \(B_2 \) into a single sorted array using the provided routine (let’s call it MERGE). The algorithm is then as follows.

```plaintext
MERGEMULTIPLEARRAYS(A_1[1..n], \ldots, A_k[1..n]):
if k = 1
    return A_1
B_1 ← MERGEMULTIPLEARRAYS(A_1, \ldots, A_{\lceil k/2 \rceil})
B_2 ← MERGEMULTIPLEARRAYS(A_{\lceil k/2 \rceil + 1}, \ldots, A_k)
return MERGE(B_1, B_2)
```

First, let us show the running time of the algorithm. At the base case, we have \(T(k) = n \) for \(k = 1 \). There can be some confusion on this point on whether \(T(1) = 1 \) or \(T(1) = n \); returning the array requires potentially copying it and it is safer to assume it takes time proportional to \(n \).

For the recursion, \(B_1 \) is an array of size \(n \lceil k/2 \rceil \) and \(B_2 \) is an array of size \(n \lfloor k/2 \rfloor \). So merging them takes \(O(n \lceil k/2 \rceil + n \lfloor k/2 \rfloor) = O(nk) \) time. We will assume that there is a constant \(c \) such that merging takes at most \(cnk \) time. Thus, the recurrence is given by

\[
T(k) \leq \begin{cases}
 cn & \text{if } k = 1, \\
 2T(k/2) + cn & \text{otherwise.}
\end{cases}
\]

The recurrence can be solved to get an overall running time of \(O(nk \log(k + 1)) \). We add a plus 1 to handle the case of \(k = 1 \).

To show the correctness of the algorithm, we will use induction on \(k \). Let \(k \) be an arbitrary integer \(\geq 1 \). Let \(A_1, \ldots, A_k \) be \(k \) arbitrary sorted arrays (with the assumption that all numbers in the arrays are distinct), each of size \(n \). We wish to show that MERGEMULTIPLEARRAYS, on input \(A_1, \ldots, A_k \), merges them into a single sorted array \(A \) of \(kn \) elements.

For the base case, we have \(k = 1 \). In this case \(A_1 \) is already sorted and MERGEMULTIPLEARRAYS simply returns the single array \(A_1 \).

For the inductive step, assume that MERGEMULTIPLEARRAYS correctly merges \(\ell \) sorted arrays, for every \(\ell < k \), into a single sorted array of size \(\ell n \). From the inductive hypothesis, it follows that \(B_1 \) is a sorted array of size \(\lceil k/2 \rceil n \) and \(B_2 \)}
is a sorted array of size \(\lceil k/2 \rceil n \). Since \textsc{Merge} correctly merges the two arrays into a single sorted array, we conclude that \textsc{MergeMultipleArrays} correctly merges the \(k \) sorted arrays into a single sorted array.

- In \textsc{MergeSort} we split the array of size \(N \) into two arrays each of size \(N/2 \), recursively sort them and merge the two sorted arrays. Suppose we instead split the array of size \(N \) into \(k \) arrays of size \(N/k \) each and use the merging algorithm in the preceding step to combine them into a sorted array. Describe the algorithm formally and analyze its running time via a recurrence. You do not need to prove the correctness of the recursive algorithm.

Solution: The algorithm is as given below. We split the array of size \(N \) into \(k \) arrays of size \(\lceil N/k \rceil \). Note that the \(k \)th array is dealt outside the for loop since \(k \cdot \lceil N/k \rceil \) can be larger than \(N \). Note also that each array \(B_i \) is of size \(\lceil N/k \rceil \), except \(B_k \). This can be easily fixed by appending large numbers at the end of \(B_k \). We have skipped over this detail to keep the algorithm brief.

\[
\text{NewMergeSort}(A[1..N]): \\
\text{if } N = 1 \\
\quad \text{return } A \\
\text{for } i \leftarrow 1 \text{ to } k - 1 \\
\quad j \leftarrow (i - 1) \cdot \lceil N/k \rceil \\
\quad B_i \leftarrow \text{NewMergeSort}(A[j + 1..j + \lceil N/k \rceil]) \\
\quad B_k \leftarrow \text{NewMergeSort}(A[(k - 1) \cdot \lceil N/k \rceil + 1..N]) \\
\text{return } \textsc{MergeMultipleArrays}(B_1, \ldots, B_k)
\]

At the base case, we have \(T(N) = O(1) \) for \(N = 1 \). At each step, it takes \(O(1) \) to set up each recurrence. There are a total of \(k \) recurrences, so it takes a total of \(O(k) \) time to set them all up\(^6\). Finally, it takes \(O(N \log k) \) time to run the \textsc{MergeMultipleArrays} routine (since \(n = N/k \)). This eclipses the \(O(k) \) time taken to set up the recurrences (since \(N > k \)). Thus, the recurrence is given by

\[
T(N) \leq \begin{cases}
O(1) & \text{if } N = 1, \\
N T\left(\frac{N}{k}\right) + O(N \log k) & \text{otherwise.}
\end{cases}
\]

To solve the recurrence relation, note that at level \(i \) in the recurrence tree there are a total of \(k^i \) nodes. Each node represents a problem of size \(N/k^i \). So the total work done at level \(i \) of the recurrence tree is \(O(k^i N \cdot \log k) = O(N \log k) \). Since there are \(\log_k N \) levels, the total work done (at the non-leaf nodes) is given by

\[
\sum_{i=0}^{\log_k N - 1} O(N \cdot \log k) = O(N \cdot \log_k N \cdot \log k) \\
= O(N \cdot \frac{\log N}{\log k} \cdot \log k) \\
= O(N \log N).
\]
Since there are a total of \(O(k \log_k N) = O(N) \) leaves, the total work done at leaves is \(O(N) \). Thus, we conclude that the \texttt{NewMergeSort} algorithm runs in \(O(N \log N) \) time, which is no better (asymptotically) than the regular merge sort.

To show the correctness of the algorithm, we will use induction on \(N \). Let \(N \) be an arbitrary integer \(\geq 1 \). We wish to show that \texttt{NewMergeSort}, on input an unsorted array \(A \), sorts \(A \).

For the base case, we have \(N = 1 \). In this case \(A \) is already sorted and \texttt{NewMergeSort} simply returns \(A \).

For the inductive step, assume that \texttt{NewMergeSort} correctly sorts any arbitrary input array of size \(\ell < N \). From the inductive hypothesis, it follows that each \(B_i \), for \(i \in [1, k] \), is a sorted array of size \([N/k] \). Since \texttt{MergeMultipleArrays} correctly merges the \(k \) sorted arrays (from the previous part), we conclude that \texttt{NewMergeSort} correctly sorts \(A \).

\[\text{This also captures the time taken to append large numbers to } B_k. \text{ This is because we will need to append at most } k \text{ numbers and that will take } O(k) \text{ time.} \]

Extra credit: This is a generalization of the first part. Suppose the \(k \) arrays are of potentially different sizes \(n_1, n_2, \ldots, n_k \) where \(N = \sum_{i=1}^{k} n_i \). Describe and analyze an \(O(N \log k) \) algorithm to obtain a sorted array.

Solution: The algorithm is the same as the one for first part. We will ignore the non-uniform sizes.

- Merge \([k/2] \) sorted arrays \(A_1, \ldots, A_{[k/2]} \) into a single sorted array \(B_1 \).
- Merge \([k/2] \) sorted arrays \(A_{[k/2]+1}, \ldots, A_k \) into a single sorted array \(B_2 \).

We can recursively solve the above two problems and merge \(B_1 \) and \(B_2 \) into a single sorted array using the provided routine (let’s call it \texttt{Merge}). The algorithm is then as follows.

```plaintext
\textsc{MergeMultipleArrays}(A_1[1..n], \ldots, A_k[1..n]):
  if \( k = 1 \)
    return \( A_1 \)
  \( B_1 \leftarrow \texttt{MergeMultipleArrays}(A_1, \ldots, A_{[k/2]}) \)
  \( B_2 \leftarrow \texttt{MergeMultipleArrays}(A_{[k/2]+1}, \ldots, A_k) \)
  return \texttt{Merge}(B_1, B_2)
```

The correctness of the algorithm follows the same outline as the one from the first part. The only thing to check is the running time. We will use a two parameter recurrence. Let \(T(N, k) \) be the running time of merging \(k \) sorted arrays with a total of \(N \) elements. We have \(T(N, k) = N \) for \(k = 1 \).

For the recursion, \(B_1 \) is an array of size \(N_1 \) and \(B_2 \) is an array of size \(N_2 \) where \(N_1 + N_2 = N \). So merging them takes \(O(N) \) time. We will assume that there is a constant \(c \) such that merging takes at most \(cN \) time. Thus, the recurrence is given by

\[
T(N, k) \leq \begin{cases}
 cN & \text{if } k = 1, \\
 T(N_1, [k/2]) + T(N_2, [k/2]) + cN & \text{otherwise.}
\end{cases}
\]
One can prove by induction that $T(N, k) = O(N \log(k))$ but it is a bit tedious. Instead we will consider the recursion tree approach. For simplicity assume k is a power of 2. The recursion tree is a complete binary tree with k nodes at the leaves and depth $\log k$. The work at the root node is cN. What about the work at the next level? It is $cN_1 + cN_2$ which is cN. One can prove easily by induction that the total work at each level is cN and there are $\log k$ levels and hence the total work is $O(N \log k)$.

Thus the non-uniformity in the arrays does not really matter. ■

Rubric:

- 5 points.
 - 1 for minor error in algorithm (incorrect initialization, smaller problem size wrong by one value etc.)
 - 2 for error in algorithm.
 - 1 point for missing/ error in analyzing the running time.
 - 2 points for missing/ error in the justification (a full formal proof of correctness is not necessary).

- 5 points.
 - 1 for minor error in algorithm (incorrect initialization, smaller problem size wrong by one value etc.)
 - 2 points for error in algorithm.
 - 2 points for missing/error in analyzing the running time.
 - 1 point for missing/error in the justification of correctness for the algorithm (a full formal proof of correctness is not necessary).

- 5 points. 2.5 points for correct algorithm and 2.5 points for analysis of running time.
3. Sorting is a fundamental and heavily used routine and can be done in $O(n \log n)$ time for a list of n numbers. In the comparison tree model there is a lower bound of $\Omega(n \log n)$ for sorting. Selection can be done in $O(n)$ time. Although a faster Selection algorithm may not be as directly useful in practice as Sorting, the ideas behind a linear time algorithm for it are theoretically interesting and related ideas play an important role in other problems. For each of the problems below use Selection as a black box algorithm to derive an $O(n)$ time algorithm.

- It is common these days to hear statistics about wealth inequality in the United States. A typical statement is that the top 1% of earners together make more than ten times the total income of the bottom 70% of earners. You want to verify these statements on some data sets. Suppose you are given the income of people as an n element unsorted array A, where $A[i]$ gives the income of person i. Describe an algorithm that given A checks whether the top 1% of earners together make more than ten times the bottom 70% together. Assume for simplicity that n is a multiple of 100 and that all numbers in A are distinct.

Solution: We will use $\text{SELECT}(A[1..n], k)$ as a black box routine that given an array A of n numbers and an integer k such that $1 \leq k \leq n$ returns the k'th ranked element in A.

The algorithm for this problem is simple. We obtain $x = \text{SELECT}(A[1..n], 0.7n)$ and $y = \text{SELECT}(A[1..n], 0.99n - 1)$. Once we have x we can scan the array A once in $O(n)$ time to compute the sum of all numbers less than equal to x and obtain their sum s_1 which is the total income of the bottom 70% of earners. Similarly we can compute s_2 which is the sum of all numbers in A that are greater than y which gives us the total income of the top 1% of earners. We then compare if $s_1 < s_2$ to check whether the claim is true. Total time is $O(n)$ plus the time for the two calls to SELECT which by our assumption is $O(n)$.

```plaintext
INCOMEINEQCHECK(A[1..n]):
  x ← SELECT(A[1..n], 0.7n)
  y ← SELECT(A[1..n], 0.99n - 1)
  s1 ← 0
  for (i = 1 to n) do
    if (A[i] ≤ x) s1 ← s1 + A[i]
  s2 ← 0
  for (i = 1 to n) do
    if (A[i] > y) s2 ← s2 + A[i]
  if (s1 < s2) return YES
  Else return NO
```

Solution:

We will use $\text{SELECT}(A[1..n], k)$ as a black box routine that given an array A of n numbers and an integer k such that $1 \leq k \leq n$ returns the k'th ranked element in A.
• Describe an algorithm to determine whether an arbitrary array \(A[1..n] \) contains more than \(n/6 \) copies of any value.

Solution: First we observe the following simple fact. Given a number \(x \) and an array \(A[1..n] \) we can count the number of times that \(x \) occurs in \(A \) in \(O(n) \) time by a simple scan.

Now for the main problem. We will assume that \(n > 6 \) for otherwise the answer is always yes. Imagine that we sort \(A \) and let us call the sorted array \(B \). Then all copies of any value will be next to each other. Suppose \(A \) contains an element \(x \) which occurs more than \(n/6 \) times. Let \(i \) and \(j \) be the first and last occurrences of \(x \) in \(B \). Then \(j - i + 1 > n/6 \). This implies that at least one of the indices \(\lfloor n/6 \rfloor, 2\lfloor n/6 \rfloor, \ldots, 7\lfloor n/6 \rfloor \) must lie in the interval \([i, j]\) which means that \(x \) must be the rank \(h \) element for some \(h \in \{\lfloor n/6 \rfloor, 2\lfloor n/6 \rfloor, \ldots, 7\lfloor n/6 \rfloor\} \). We can use \text{SELECT} \(7 \) times to fine the elements corresponding to these ranks. And then check for each of them whether they occur more than \(n/6 \) times.

```plaintext
CheckFrequentItem(A[1..n]):
  for (h = 1 to 7) do
    x_h ← SELECT(A[1..n], h\lfloor n/6 \rfloor)
  for (h = 1 to 7) do
    Count the number of times \( x_h \) occurs in \( A \). Let \( n_h \) be the count.
    if (\( n_h > n/6 \)) return YES
  return NO
```

There are at most \(7 \) calls to SELECT and \(7 \) additional scans of \(A \). Hence the total time is \(O(n) \).

• The square distance between a pair of integers \(x, y \) is defined as the quantity \((x - y)^2 \). The input is an array \(A \) of \(n \) integers and an integer \(k \) such that \(1 \leq k \leq n \). Describe an algorithm to find \(k \) elements in \(A \) with the smallest square distance to the median (i.e. the element of rank \(\lfloor n/2 \rfloor \) in \(A \)). For instance, if \(A = [9, 5, -3, 1, -2] \) and \(k = 2 \), then the median element is 1, and the 2 elements in \(A \) with the smallest square distance to the median are \(\{1, -2\} \). If \(k = 3 \), then you can output either \(\{1, -2, -3\} \) or \(\{1, -2, 5\} \).

Solution: The algorithm first computes the median \(x \) of \(A \) by one call to SELECT in \(O(n) \) time. Then it forms a new array \(B[1..n] \) where \(B[i] = (A[i] - x)^2 \). This takes \(O(n) \) time. Then it does a second call to SELECT on \(B \) to find the rank \(k \) element \(y \). It then go through \(A \) to find all elements whose square distance to \(x \) is at most \(y \) and stop after finding the first \(k \). One has to be a bit careful to take care of ties with \(y \); we will store them separately and add an appropriate amount of them at the end.
\textbf{MinSquareDistToMedian}(A[1..n], k):
\begin{itemize}
 \item \(x \leftarrow \text{SELECT}(A[1..n], \lceil n/2 \rceil) \)
 \item Allocate an array \(B \) of size \(n \)
 \item for \((i = 1 \) to \(n) \) do
 \begin{itemize}
 \item \(B[i] \leftarrow (A[i] - x)^2 \)
 \end{itemize}
 \item \(y \leftarrow \text{SELECT}(B[1..n], k) \)
 \item \(\text{count} \leftarrow k \)
 \item for \((i = 1 \) to \(n) \) do
 \begin{itemize}
 \item if \(((A[i] - x)^2 < y) \)
 \begin{itemize}
 \item Add \(A[i] \) to output list \(O \)
 \end{itemize}
 \item \(\text{count} \leftarrow \text{count} - 1 \)
 \item else if \(((A[i] - x)^2 == y) \)
 \begin{itemize}
 \item Add \(A[i] \) to temporary list \(T \)
 \end{itemize}
 \end{itemize}
 \item Add any \(k - \text{count} \) items from temporary list \(T \) to output list \(O \)
 \item Output list \(O \) of size \(k \)
\end{itemize}

The running time is dominated by two calls to \text{SELECT}, plus a for loop, each of which takes \(O(n) \) time.