Show that NP is closed under the kleene-star operation.
CS/ECE-374: Lecture 28 - Final Exam review

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
May 04, 2021

University of Illinois at Urbana-Champaign
Pre-lecture brain teaser

Show that NP is closed under the kleene-star operation.
Topics for the final exam include:

- Regular expressions
- DFAs, NFAs,
- Fooling Sets and Closure properties
- Turing Machines and Decidability
- Recursion and Dynamic Programming
- DFS/BFS
- Djikstra, Bellman-Ford (Path finding)
- Reductions/ NP-Completeness
In today’s lecture let’s focus on a few that you guys had trouble on in the midterms (and the most recent stuff which you’ll be tested on).

- Regular expressions
- DFAs, NFAs,
- **Fooling Sets and Closure properties**
- **Turing Machines and Decidability**
- Recursion and Dynamic Programming
- DFS/BFS
- Djikstra, Bellman-Ford (Path finding)
- **Reductions/ NP-Completeness**
Practice: Asymptotic bounds

Given an asymptotically tight bound for:

$$\sum_{i=1}^{n} i^3$$ \hspace{1cm} (1)
Find the regular expression for the language:

\[\{ w \in \{0,1\}^* \mid \text{w does not contain 00 as a substring} \} \]
Is the following language regular?

\[L = \{ w | w \text{ has an equal number of 0's and 1's } \} \]
Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following statements about M are true?

1. M accepts the empty string ε - false
2. $\delta(s, 010) = \{s, a, c\}$ - true
3. ε-reach(a) = $\{s, a, c\}$ - true
4. M rejects the string 11100111000 - true
5. $L(M) = (00)^* + (111)^*$ - true
Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following statements about M are true?

1. M accepts the empty string ε -
Let M be the following NFA:

Which of the following statements about M are true?

1. M accepts the empty string ε -
2. $\delta(s, 010) = \{s, a, c\}$ -

\[\varepsilon - \text{reach}(a) = \{s, a, c\} \]
Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following statements about M are true?

1. M accepts the empty string ε -
2. $\delta(s, 010) = \{s, a, c\}$ -
3. $\varepsilon - \text{reach}(a) = \{s, a, c\}$ -

Which of the following statements about M are true?
Let M be the following NFA:

Which of the following statements about M are true?

1. M accepts the empty string ε -
2. $\delta(s, 010) = \{s, a, c\}$ -
3. $\varepsilon - \text{reach}(a) = \{s, a, c\}$ -
4. M rejects the string 11100111000 -
Let M be the following NFA:

Which of the following statements about M are true?

1. M accepts the empty string ε -
2. $\delta(s, 010) = \{s, a, c\}$ -
3. $\varepsilon - \text{reach}(a) = \{s, a, c\}$ -
4. M rejects the string 11100111000 -
5. $L(M) = (00)^* + (111)^*$ -
Which of the following is true for every language $L \subseteq \{0, 1\}^*$

1. L^* is non-empty -
2. L^* is regular -
3. If L is NP-Hard, then L is not regular -
4. If L is not regular, then L is undecidable -
A *centipede* is an undirected graph formed by a path of length k with two edges (legs) attached to each node on the path as shown in the below figure. Hence, the centipede graph has $3k$ vertices. The **CENTIPEDe** problem is the following: given an undirected graph $G = (V, E)$ and an integer k, does G contain a *centipede* of $3k$ vertices as a subgraph? Prove that **CENTIPEDe** is NP-Complete.
What do we need to do to prove Centipede is NP-Complete?
Prove Centipede is in **NP:**
Prove Centipede is in **NP-hard**:
Prove (via reduction) that the following language is undecidable.

\[\text{AcceptOrBust} = \{\langle M \rangle | M \text{ does not reject any input} \} \]

Your reduction must involve the \textbf{SelfHalts} problem which is known to be undecidable:

\[\text{SelfHalts} = \{\langle M \rangle | M \text{ halts on input } \langle M \rangle \} \]
Practice: Decidability

\[
\text{AcceptOrBust} = \{\langle M \rangle | \text{M does not reject any input}\}
\]

\[
\text{SelfHalts} = \{\langle M \rangle | \text{M halts on input} \; \langle M \rangle \}
\]
Consider the two problems:

Problem: 3SAT

- **Instance:** Given a CNF formula φ with n variables, and k clauses
- **Question:** Is there a truth assignment to the variables such that φ evaluates to true

Problem: Clique

- **Instance:** A graph G and an integer k.
- **Question:** Does G has a clique of size $\geq k$?

Reduce 3SAT to CLIQUE
Given a graph G, a set of vertices V' is:

clique: every pair of vertices in V' is connected by an edge of G.
Reduction: 3SAT to Clique

Bust out the reduction diagram:

\[
\begin{align*}
\mathcal{R} & \xrightarrow{I_X} I_Y & \mathcal{A}_Y & \xrightarrow{YES} \text{NO} \\
\mathcal{A}_X
\end{align*}
\]
Some thoughts:

- Clique is a fully connected graph and very similar to the independent set problem
- We want to have a clique with all the satisfying literals
 - Can’t have literal and its negation in same clique
 - Only need one satisfying literal per clique
Hence the reduction creates a undirected graph G:

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
 - nodes in the same triple
 - nodes with contradictory labels (x_1 and $\overline{x_1}$)
Hence the reduction creates a undirected graph G:

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
 - nodes in the same triple
 - nodes with contradictory labels (x_1 and $\overline{x_1}$)

$$\varphi = (x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2)$$
Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G:

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
 - nodes in the same triple
 - nodes with contradictory labels (x_1 and $\overline{x_1}$)

$$\varphi = (x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2)$$
Hence the reduction creates a undirected graph G:

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
 - nodes in the same triple
 - nodes with contradictory labels (x_1 and $\overline{x_1}$)

$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3)$$
Hence the reduction creates a undirected graph G:

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
 - nodes in the same triple
 - nodes with contradictory labels (x_1 and \overline{x}_1)

$$\varphi = (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor x_3)$$
3SAT to Independent Set Reduction

Very similar to 3SAT to independent set reduction:

\[
\neg x_1 \lor x_2 \lor \neg x_1 \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)
\]

Figure 1: Graph for \(\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \)