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We know that SAT is NP-complete which measn that it is in
NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT?
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Pre-lecture brain teaser

We know that SAT is NP-complete which measn that it is in
NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? Yes
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NP-Completeness of three problems:

- Undirected HC problem
- 3-Color Problem
- Circuit SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a
flavor



Hamiltonian cycle in undirected
graph



Hamiltonian Cycle in Undirected Graphs

HC, YT J)v-a}r"t 5"&1/ lv& — M‘\p"‘ cav‘?ﬂ/o%'o_
Problem BN PO qrreded
Input Given undirected graph G = (V, E)

Goal Does G have a Hamiltonian cycle? That is, is there
a cycle that visits every vertex exactly one (except
start and end vertex)?



NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is
NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.

- Hardness proved by reducing Directed Hamiltonian Cycle
to this problem N



Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path

Reduction
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v;,, Vv, and Vot

- A directed edge (a, b) is replaced by edge (aout, bin)
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Reduction Sketch Example

Graph with cycle:




Reduction Sketch Example

Graph with cycle:

Graph without cycle:




NP-Completeness of Graph Coloring




Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be col-
ored using k colors so that vertices connected by
an edge do not get the same color?




Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?




Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?




Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G
can be partitioned into kR independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable Iff G is bipartite! There is a linear time
algorithm to check if G is bipartite using Breadth-first-Search
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Problems related to graph coloring




Graph Coloring and Register Allocation

Register Allocation
Assign variables to (at most) k registers such that variables

needed at the same time are not assigned to the same register

Interference Graph ‘
Vertices are variables, and there is an edge between two

vertices, If the two variables are “live” at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to
coloring the interference graph with k colors

- Moreover, 3-COLOR <pfk — Register Allocation, for any
k=3 K - eslov
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Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
Reduce to Graph k-Coloring problem

Create graph G

- a node v; for each class |

- an edge between v; and v; if classes i and j conflict

Exercise: G Is R-colorable Iff k rooms are sufficient
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Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division
Multiple Access (FDMA) (example: GSM in Europe and Asia and
AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of
frequencies [ap, bol, [a1, 1], - - ., [Gk, D]

- Each cell phone tower (simplifying) gets one band

- Constraint: nearby towers cannot be assigned same band,

otherwise signals will interference

13



Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division
Multiple Access (FDMA) (example: GSM in Europe and Asia and

AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of
frequencies [ap, bol, [a1, 1], - - ., [Gk, D]

- Each cell phone tower (simplifying) gets one band

- Constraint: nearby towers cannot be assigned same band,

otherwise signals will interference

Problem: given k bands and some region with n towers, is
there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict

graph on towers.
13



Showing hardness of 3 COLORING



3-Coloring is NP-Complete

- 3-Coloring is in NP. Bullig o f"t‘f certiie~ D(E)

MW Non-deterministically guess a 3-coloring for each node

+ Check if for each edge (u, v), the color of u is different from
that of v.

- Hardness: We will show 3-SAT <p 3-Coloring.
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula)@ withdm variables

X1,...,Xp andfmrclauses Cy, ..., Cp. Create graphdGgrsuch that ¢
G, Is 3-colorable Iff ¢ Is satisfiable 2 ﬁ-‘“"YF%i 7
- need to establish truth assignment for x;,..., X, via colors

for some nodes in G,.

- create triangle with node True, False, Base

- for each variable x; two nodes v; and v; connected in a
triangle with common Base

- If graph Is 3-colored, either v; or v; gets the same color as
True. Interpret this as a truth assignment to v;

- Need to add constraints to ensure clauses are satisfied
(next phase)
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we caathink of:

0 ) = o) T =80

Lo,]
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true c
- Not 3-colorable if none of the literals are true @

Let’s start off with the simplest SAT we cna think of:

f(x1,%2) = (X1 V X2) @, (1)

Assume green=true and red=false, G
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Let's try some stuff:
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable If at least one of the literals is true
- Not 3-colorable if none of the literals are true

Seems to work:

_,W node.
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

f(X1,%2,X3) = (X1 V X2 V X3) (2)

Assume green=true and red=false,

19



3 color this gadget Il

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.
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3 color this gadget.

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.
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Reduction Idea Il - Literal Assignment |

Next we need a gadget that assigns literals. Our previously
constructed gadget assumes:

- All literals are either red or green.

- Need to limit graph so only x; or X7 is green. Other must
be red

23



Reduction Idea Il - Literal Assignment |

24



Review Clause Satisfiability Gadget

For each clause ;= (aV bV ¢), create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, ¢

- needs to implement OR

OR-gadget-graph:

25



OR-Gadget Graph

Property: If a, b, c are colored False in a 3-coloring then output
node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.

26



- create triangle with nodes True, False, Base

- for each variable x; two nodes v; and v; connected in a
triangle with common Base

- for each clause (; = (a Vv b Vv ¢), add OR-gadget graph with

Input nodes a, b, c and connect output node of gadget to
both False and Base

27



Lemma
No legal 3-coloring of above graph (with coloring of nodes

T.F,B fixed) in which a, b, c are colored False. If any of a, b, c
are colored True then there is a legal 3-coloring of above
graph.

28



Reduction Outline

Example
e=(UV-VVW)A(VVXV-Y)

29



Correctness of Reduction

@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False

30
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@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False

- for each clause (; = (aVv bV c)atleastone of a,b,cis
colored True. OR-gadget for C; can be 3-colored such that
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Correctness of Reduction

@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False

- for each clause (; = (aVv bV c)atleastone of a,b,cis
colored True. OR-gadget for C; can be 3-colored such that
output is True.

G, Is 3-colorable implies ¢ is satisfiable

- If v; Is colored True then set x; to be True, this Is a legal
truth assignment

- consider any clause (; = (a Vv b v ¢). it cannot be that all
a,b,c are False. If so, output of OR-gadget for C; has to be
colored False but output is connected to Base and False!
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Graph generated in reduction from 3SAT to 3COLOR
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Circuit-Sat Problem




A circuit is a directed acyclic graph with

- [nput vertices (without
incoming edges) labeled
with 0, 1 or a distinct
variable.

- Every other vertex is
labeled Vv, A or —.

- Single node output vertex
with no outgoing edges.

32



A circuit is a directed acyclic graph with

&

s

- [nput vertices (without

incoming edges) labeled
with 0, 1 or a distinct
variable.

- Every other vertex is

labeled Vv, A or —.

- Single node output vertex

with no outgoing edges.
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Circuits

\J

/> . .
A circit isss directed acyclic graph with

\Y : :
- [nput vertices (without
Sutput: '1) incoming edges) labeled
with 0, 1 or a distinct
© (A) variable.
- Every other vertex is
(N) (V] (V) labeled v, A or —.

- Single node output vertex
nputs () @ @ © @ with no outgoing edges.
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: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).) .
Given a circuit as input, is there an assignment to the input

variables that causes the output to get value 17

33



: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).) .
Given a circuit as input, is there an assignment to the input

variables that causes the output to get value 17

Lemma
CSAT is in NP.

- Certificate: Assignment to input variables.

- Certifier: Evaluate the value of each gate in a topological
sort of DAG and check the output gate value.

33



Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to
express Boolean formulas

34



Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to
express Boolean formulas

However they are equivalent in terms of polynomial-time
solvability.

Theorem
SAT <p 3SAT <p CSAT.

Theorem
CSAT <p SAT <p 35AT.




Converting a formula into a Circuit

Given 3CNF formula ¢ with n variables and m clauses, create a
Circuit C.

- Inputs to C are the n boolean variables xq1, x>, ..., X,
- Use NOT gate to generate literal —x; for each variable x;

- For each clause (¢ V £, V £3) use two OR gates to mimic
formula

- Combine the outputs for the clauses using AND gates to
obtain the final output

SAT = (V= V1) ACraVrst)

35



Example: <p

Y = (X1 V VX3V X4) A (X1 V =Xy V —|X3> A\ <—|X2 V —X3V X4>
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Example: <p

Y = (X1 V VX3V X4) A (X1 V =Xy V —|X3> A\ <—|X2 V —X3V X4>

@ 9 ¢
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Example: <p

Y = (X1 V VX3V X4) A (X1 V =Xy V —|X3> A\ <—|X2 V —X3V X4>

® @ ©® ©
@ @ ¢
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Example: <p
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Example: <p

Y = (X1 V VX3V X4) A (X1 V =Xy V —|X3> A\ <—|X2 V —X3V X4>
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Example: <p

Y = (X1 V VX3V X4) A (X1 V =Xy V —|X3> A\ <—|X2 V —X3V X4>

A
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Example: <p

> OF - Cowp [F=

Y = (X1 V VX3V X4) A (X1 V =Xy V —|X3) A\ <—|X2 V —X3V X4>

¥

71
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?
( Kre JM.{'.'SAT é P %T

Oy
?(é Z 3 LAl <& ¢ Cveit™ - St o CTSAT o QP el
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

But first we need to look back at a gadget!
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Converting z = x A\ y to 3SAT

Z':;e.\/‘y

[f,‘ilzl = E\,O, l-l
[o,O‘O_S

2R 2 OO OO N
D OO OO0l

S 2 OO | |O|O| X<

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

X Y I|Z=XAy

Z

0

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

X Y I|Z=XAy

0

Z

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

X veey

X YVI|Z=XAyl|lzv

0

Z

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

ZVXVYy

X veey

X YVI|Z=XAyl|lzv

Z

0

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

ZVXVYy

ZVXVYy

X veey

X YVI|Z=XAyl|lzv

0

Z

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

ZVXVYy

X veey

X YVI|Z=XAyl|lzv

Z

0

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

ZVXVYy

X veey

X YVI|Z=XAyl|lzv

0

Z

38



-
<
Vg
o
@)
+—
>
<
X
|
N
)]
c
=]
—
()
>
c
@)
o

ZVXVYy

X veey

X YVI|Z=XAyl|lzv

Z

0

«Ay)

(2

38

ZNVXVY)NZVXVY)

YAZVXVY)A(Z

ZVXVY



Summary of formulas we derived

Lemma
The following identities hold:

cZ7=X = (ZVX)N(ZVX).
'(Z:X\/y> = (ZVY)ANZVX)A(ZVXVY)
'(Z:X/\y> — (z\/>_<\/)7)/\(2\/x)/\(2\/y)

39



Converting a circuit into a formula

(A) Input circuit (B) Label the nodes.

40



Converting a circuit into a formula

(B) Label the nodes. (C) Introduce var for each node.

41



Converting a circuit into a formula

X, (Demand a sat’" assign-
ment!)

Xk :X,‘/\Xj
Xj = Xg N Xh
X,——le
Xh = Xgq V Xe
Xg = Xp V Xc
X = Xa N\ Xp
Xd:O

Xqg =1

(D) Write a sub-formula for
each variable that is true
If the var Is computed cor-
rectly. 42

(C) Introduce var for each node.



Converting a circuit into a formula

Xp Xp
Xp = Xi N X (=Xp VX)) A (Xe VX)) A (Xp VXV X))
Xj = Xg AXp || (=X VXg) A (=X VXp) A (X V —Xg V —Xp)
Xi = X (X,' V Xf) A (ﬁX,’ V —'Xf)
Xp =Xg VXe || (XpV—Xg) A (XpV —Xe) A(—Xp V Xg V Xe)
Xg=XpVXc || (XgV—Xp)A(XgV —Xc)A(=XgVXpV Xc)
Xr=Xa AXp || (=XF VXa) A (=Xr V Xp) A (Xp V=X V —Xp)
Xqg=20 —Xd

Xa:1 Xa

43



Converting a circuit into a formula

1 Xe A (=Xp V Xi) A (=Xk VX))
A (Xp V=XV =X) A (=X V Xg)
A (=X V Xp) A (X V —Xg V —Xp)
A (X V Xe) A (=X V —Xr)

N (Xh V —'Xd) N (Xh V —|Xe)
DE (=Xp V Xg V Xe) A(Xg V —Xp)
A (Xg V —Xc) A (=Xg V Xp V Xc)
& A (=Xp V Xa) A (=X V Xp)

A (Xp V =Xq V =Xp) A (—Xg) A Xq

We got a CNF formula that is satisfiable if and only If the
original circuit is satisfiable.

A



Reduction: CSAT <p SAT

- For each gate (vertex) v in the circuit, create a variable x,

- Case —: v is labeled = and has one incoming edge from u
(so x, = —xy). In SAT formula generate, add clauses
(Xu V Xv), (—xy V =xy). Observe that

(Xu V Xy)

both true.
(_|Xu \/ _|X\/)

Xy = —Xy IS true <

45



Reduction: CSAT <p SAT

- Case V: So Xy = Xy V Xy. In SAT formula generated, add
clauses (xy V =xy), (Xy V =Xy ), and (—xy V Xy V Xy ). Again,
observe that

(X\/ \/ _'Xu)7
(XV =Xy V XW) Istrue <= (xy V —Xy), all true.
(_|X\/ \/ Xu \/ XW)
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Reduction: CSAT <p SAT

- Case A\: SO Xy = Xy A Xy. In SAT formula generated, add
clauses (—x, V Xy), (—=xv V Xy ), and (xy V =X, V =Xy ). Again
observe that

(_|X\/ \/Xu),
Xy =Xy AXw IsStrue <= (=X, V Xu), all true.
(X\/ \/ _'Xu \/ _'Xw)

47



Reduction: CSAT <p SAT

- If vis an input gate with a fixed value then we do the
following. If x, = 1 add clause x,. If x, = 0 add clause —xy

- Add the clause x, where v is the variable for the output
gate

48



Correctness of Reduction

Need to show circuit C Is satisfiable Iff ¢ Is satisfiable

= Consider a satisfying assignment a for C

- Find values of all gates in C under a
- Give value of gate v to variable x,; call this assignment a’
- a’ satisfies ¢ (exercise)

< Consider a satisfying assignment a for ¢

- Let @’ be the restriction of a to only the input variables
- Value of gate v under @’ is the same as value of x, in @
- Thus, a’ satisfies C

49



