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Pre-lecture brain teaser

We know that SAT is NP-complete which measn that it is in
NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT?



NP-Completeness of three problems:

- Undirected HC problem
- 3-Color Problem
- Circuit SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a
flavor



Hamiltonian cycle in undirected
graph



Hamiltonian Cycle in Undirected Graphs

Problem
Input Given undirected graph G = (V,E)

Goal Does G have a Hamiltonian cycle? That is, is there
a cycle that visits every vertex exactly one (except
start and end vertex)?



NP-Completeness

Theorem ‘
Hamiltonian cycle problem for undirected graphs is
NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.

- Hardness proved by reducing Directed Hamiltonian Cycle
to this problem O



Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path

Reduction
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path
Reduction

- Replace each vertex v by 3 vertices: vj,, Vv, and vyt
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Reduction Sketch Example

Graph with cycle:



Reduction Sketch Example

Graph with cycle:

Graph without cycle:



NP-Completeness of Graph Coloring




Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be col-
ored using k colors so that vertices connected by
an edge do not get the same color?




Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?




Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?




Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G
can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time
algorithm to check if G is bipartite using Breadth-first-Search
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Problems related to graph coloring




Graph Coloring and Register Allocation

Register Allocation
Assign variables to (at most) k registers such that variables

needed at the same time are not assigned to the same register

Interference Graph .
Vertices are variables, and there is an edge between two

vertices, if the two variables are “live” at the same time.
Observations

- [Chaitin] Register allocation problem is equivalent to
coloring the interference graph with k colors

- Moreover, 3-COLOR <p k — Register Allocation, for any
k>3

n



Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
Reduce to Graph k-Coloring problem

Create graph G

- a node v; for each class i

- an edge between v; and v; if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient
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Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division
Multiple Access (FDMA) (example: GSM in Europe and Asia and
AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of
frequencies [ag, bo], [a1, b1, - - ., [a, D]

- Each cell phone tower (simplifying) gets one band

- Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference

13



Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division
Multiple Access (FDMA) (example: GSM in Europe and Asia and
AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of
frequencies [ag, bo], [a1, b1, - - ., [a, D]

- Each cell phone tower (simplifying) gets one band

- Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference

Problem: given k bands and some region with n towers, is
there a way to assign the bands to avoid interference?

Can reduce to kR-coloring by creating intereference/conflict

graph on towers.
13



Showing hardness of 3 COLORING



3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Non-deterministically guess a 3-coloring for each node

- Check if for each edge (u,v), the color of u is different from
that of v.

- Hardness: We will show 3-SAT <p 3-Coloring.
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Reduction Idea

Start with 3SAT formula (i.e,, 3CNF formula) ¢ with n variables
X1,...,Xp and m clauses Gy, ..., Cp. Create graph G, such that
G, is 3-colorable iff ¢ is satisfiable

- need to establish truth assignment for x;, ..., x, via colors
for some nodes in G,.

- create triangle with node True, False, Base

- for each variable x; two nodes v; and v; connected in a
triangle with common Base

- If graph is 3-colored, either v; or v; gets the same color as
True. Interpret this as a truth assignment to v;

- Need to add constraints to ensure clauses are satisfied
(next phase)

15



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we cna think of:

f(x1,x2) = (X1 VX2) (1)



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we cna think of:
flxi,x2) = (¥ V x2) (1)

Assume green=true and red=false,



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let’s try some stuff:



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Seems to work:
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:
f(x1,%2,X3) = (X1 VX2V X3) (2)

Assume green=true and red=false,
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3 color this gadget Il

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.
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3 color this gadget.

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.
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3-coloring of the clause gadget
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Reduction Idea Il - Literal Assignment |

Next we need a gadget that assigns literals. Our previously
constructed gadget assumes:

- All literals are either red or green.

- Need to limit graph so only x; or X7 is green. Other must
be red
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Reduction Idea Il - Literal Assignment Il
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Review Clause Satisfiability Gadget

For each clause C; = (a Vv bV ¢), create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, ¢
- needs to implement OR

OR-gadget-graph:

aVbVe
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OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output
node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.
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- create triangle with nodes True, False, Base

- for each variable x; two nodes v; and v; connected in a
triangle with common Base

- for each clause C; = (a Vv b Vv ¢), add OR-gadget graph with
input nodes a, b, c and connect output node of gadget to
both False and Base

27



Lemma
No legal 3-coloring of above graph (with coloring of nodes

T,F, B fixed) in which a, b, c are colored False. If any of a, b, ¢
are colored True then there is a legal 3-coloring of above
graph.
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Reduction Outline

Example
e=UV-VvVW)A(VVXV-y)
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Correctness of Reduction

@ Is satisfiable implies G, is 3-colorable

- if xj is assigned True, color v; True and v; False

30
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Correctness of Reduction

@ Is satisfiable implies G, is 3-colorable

- if xj is assigned True, color v; True and v; False

- for each clause ;= (av bvc)at least one of a,b, cis
colored True. OR-gadget for C; can be 3-colored such that
output is True.

G, is 3-colorable implies ¢ is satisfiable

- ifvj is colored True then set x; to be True, this is a legal
truth assignment

- consider any clause C; = (a Vv bV ¢). it cannot be that all
a, b, c are False. If so, output of OR-gadget for C; has to be
colored False but output is connected to Base and False!
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Graph generated in reduction from 3SAT to 3COLOR
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Circuit-Sat Problem




A circuit is a directed acyclic graph with

- Input vertices (without
incoming edges) labeled
with 0, 1 or a distinct
variable.

- Every other vertex is
labeled Vv, A or —.

- Single node output vertex
with no outgoing edges.
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- Input vertices (without
incoming edges) labeled
with 0, 1 or a distinct
variable.
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- Single node output vertex
with no outgoing edges.
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: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).) _
Given a circuit as input, is there an assignment to the input

variables that causes the output to get value 1?

33



: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).) _
Given a circuit as input, is there an assignment to the input

variables that causes the output to get value 1?

Lemma
CSAT is in NP.

- Certificate: Assignment to input variables.

- Certifier: Evaluate the value of each gate in a topological
sort of DAG and check the output gate value.
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to
express Boolean formulas

34



Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to
express Boolean formulas

However they are equivalent in terms of polynomial-time
solvability.

Theorem
SAT <p 3SAT <p CSAT.

Theorem
CSAT <p SAT <p 3SAT.
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Converting a formula into a Circuit

Given 3CNF formula ¢ with n variables and m clauses, create a
Circuit C.

- Inputs to C are the n boolean variables x1, x5, ..., X,
- Use NOT gate to generate literal —x; for each variable x;

- For each clause (¢7 Vv £, V ¢3) use two OR gates to mimic
formula

- Combine the outputs for the clauses using AND gates to
obtain the final output

35



Example: <p

p = <X1 V VX3V X4) VAN (X1 V =Xy V —|X3> N <—\X2 V —=X3V X4>
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Example: <p

p = <X1 V VX3V X4> VAN (X1 V =Xy V —|X3> VAN <—\X2 V —=X3V X4>
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

But first we need to look back at a gadget!
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Converting z = x A 'y to 3SAT

‘Z:X/\yHZ\/XveeV‘ ZVXVYy ‘ ZVXVY ‘ ZVXVY ‘
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Summary of formulas we derived

Lemma
The following identities hold:

- Z=X = (zVX)N(ZVX).
'(Z:X\/y) = (ZVY)AN@VX)NZVXVY)
-(z:xAy) = (z\/i\/?)A(EVx)/\(?\/y)
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Converting a circuit into a formula

Output:

Output:

(A) Input circuit (B) Label the nodes.

40



Converting a circuit into a formula

Output:

(B) Label the nodes. (C) Introduce var for each node.
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Converting a circuit into a formula

X,  (Demand a sat’ assign-
ment!)

Xk = Xi A X;

Xj = Xg A Xp

Xj = —Xf

Xp = Xg V Xe

Xf = Xa A Xp
Inputs Xd =0

Xa :1

(D) Write a sub-formula for
each variable that is true
if the var is computed cor-
rectly. 42

(C) Introduce var for each node.



Converting a circuit into a formula

Xk Xp
Xk = Xi N X (—Xp V Xj) A (—Xg \/Xj) A (Xp V =X V —|Xj)
Xj=Xg AXp || (=X VXg) A (=X VXp) A (X V—Xg V —Xp)
Xj = —Xf (Xi V Xr) A (=X V —xp)
Xp=Xg VXe || (XpV —Xg) A (XpV —Xe) A(—Xp V Xg V Xe)
Xg =Xp VXc || (XgV=Xp)A(XgV =Xc)A (—Xg V Xp V Xc)
Xf =Xa AXp || (X V Xa) A (=XF V Xp) A (Xr V =Xq V —Xp)
Xqg=20 —Xd
Xg =1 Xa
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Converting a circuit into a formula

Xp N\ (—|X/Q V X,‘) A (_'XI? V Xj)

(Xe V=X V 2X;) A (=X V Xg)
(=X VXp) A (X V —Xg V —Xp)
(

(

Xi VX£) N (=X V —Xf)

Xp V =Xg) A (Xp V —Xe)

—Xp V Xg V Xe) A(Xg V —Xp)
Xg V =Xc) A (—Xg V Xp V Xc)
=X V Xq) A (—Xr V Xp)

XV =X V =Xp) A (—Xg) A Xq

We got a CNF formula that is satisfiable if and only if the
original circuit is satisfiable.
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Reduction: CSAT <, SAT

- For each gate (vertex) v in the circuit, create a variable x,
- Case —: vis labeled — and has one incoming edge from u
(so xy = —xy). In SAT formula generate, add clauses
(Xu V Xv), (—Xy V —=Xy). Observe that
(Xu V Xv)

Xy = =Xy istrue <= both true.
(_\Xu \/ _‘Xv)
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Reduction: CSAT <, SAT

- Case V: So xy, = Xy V Xy. In SAT formula generated, add
clauses (xy V =xy), (xv V =xw), and (—xy V Xy V Xy ). Again,
observe that

(XV \/ _‘Xu),
<xv = X \/XW> istrue <= (Xy V—Xy), all true.
(_‘X\/ \/Xu \/Xw)
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Reduction: CSAT <, SAT

- Case A SO Xy = Xy A Xy. In SAT formula generated, add
clauses (=xy V xy), (=xv V xw), and (x, V =xy V =xy). Again
observe that

(_‘XV \/Xu)7
Xy =Xy AXy istrue <= (=xy VXu), all true.
(X\/ \/ _‘Xu \/ _‘Xw)
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Reduction: CSAT <, SAT

- If vis an input gate with a fixed value then we do the
following. If x, = 1 add clause x,. If x, = 0 add clause —x,

- Add the clause x, where v is the variable for the output

gate
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Correctness of Reduction

Need to show circuit C is satisfiable iff ¢ is satisfiable

= Consider a satisfying assignment a for C
- Find values of all gates in C under a
- Give value of gate v to variable x,; call this assignment a’
- a’ satisfies ¢ (exercise)
< Consider a satisfying assignment a for ¢¢
- Let a’ be the restriction of a to only the input variables
- Value of gate v under @’ is the same as value of x, in a
- Thus, a’ satisfies C
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