


Pre-lecture brain teaser

A boolean expression is in disjunctive normal form if it
consists of the union of clauses where each clause is
composed of the intersection of literals. For example:

()T1/\X3 /\X4)\/(X2 /\X_3/\X4) (1)

Imagine we have a problem: DNF-SAT, where given a DNF
formula, we want to know If there is a satisfying assignment.
We know two things:

- Finding a satisfying assignment for a DNF formula takes
polynomial time.
- We can rewrite any CNF formula as a DNF formula.

Hence | do the smart thing and say since CNF-SAT <p DNF-SAT,
then CNF-SAT € NP.
Am | correct?
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NP-Completeness of two problems:

- Hamiltonian Cycle
- 3-Color

Important: understanding the problems and that they are hard.
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Reduction from 3SAT to Hamiltonian
Cycle



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph
that visits every vertex in G exactly once



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph
that visits every vertex in G exactly once
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Is the following graph Hamiltonianan?

a Yes.
b No.




Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise

- Hardness: We will show
3-SAT <p Directed Hamiltonian Cycle

1o



Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise

- Hardness: We will show
3-SAT <p Directed Hamiltonian Cycle
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Given 3-SAT formula ¢ create a graph G, such that

- G, has a Hamiltonian cycle if and only if ¢ Is satisfiable

- G, should be constructible from ¢ by a polynomial time
algorithm A

Notation: ¢ has n variables x1, X, ..., X, and m clauses
C,C, ..., C.



Reduction: First Ideas

- Viewing SAT: Assign values to n variables, and each clauses
has 3 ways in which it can be satisfied. (x, V = Vig)

- Construct graph with 2" Hamiltonian cycles, where each
cycle corresponds to some boolean assignment.

- Then add more graph structure to encode constraints on
assignments imposed by the clauses.



Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment.

Consider the expression: She
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Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment.

nsider th ression:
Consider the expressio 1 oar W)

f(x1) =1 2O (3)
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We create a cyclic graph that always has a hamiltonian:



Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment.
Consider the expression:

f(x1) =1 (3)

We create a cyclic graph that always has a hamiltonian:

But how do we encode the variable?



Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment.
Consider the expression:

f(x7) =1 (4)

Maybe we can encode the variable x4 In terms of the cycle
direction:

10



Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment.
Consider the expression:

f(x7) =1 (4)

Maybe we can encode the variable x4 In terms of the cycle
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Reduction: Encoding idea Il

How do we encode multiple variables?
S¢

[re/me) = e
f(X1,X2) = Ll (5)
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Maybe two circles? Now we need to connect them so that we
have a single hamiltonian path

1



Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (5)

Maybe two circles? Now we need to connect them so that we
have a single hamiltonian path
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (6)

Now we need to connect them so that we have a single
hamiltonian path
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (6)

Now we need to connect them so that we have a single
hamiltonian path Yyg = OV v %= L
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (7)

Would be nice to have a single start/stop node.
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (7)

Would be nice to have a single start/stop node.
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (8)

Getting a bit messy. Let's reorganize:
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (8)

Getting a bit messy. Let's reorganize:
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (9)

This Is how we encode variable assignments in a variable loop!
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Reduction: Encoding idea Il

How do we handle clauses?
Q\ \p - ,
foa) {xay (10)

Lets go back to our one variable graph:
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Reduction: Encoding idea Il

How do we handle clauses?

f(x1) = Xq (1)

Add node for clause:
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Reduction: Encoding idea Il

How do we handle clauses?

f(X1,X2) = (X1 \/)(_2) (12)

What do we do if the clause has two literals:
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Reduction: Encoding idea Il

How do we handle clauses?
f(x1,%2) = (X1 V X2) [D, O\ (12)

What do we do if the clause has two literals:
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Reduction: Encoding idea Il

QCZ“‘IF'UB = 1

How do we handle clauses?

f(X1,X2) = (X1 \/)(_2) N ()T1VX2) (13)

What if the expression has multiple clauses:

19




The Reduction: Review |

- Traverse path | from left to right iff x; is set to true

+ Each path has 3(m + 1) nodes where m is number of
clauses in ¢; nodes numbered from left to right (1 to
3m + 3)




The Reduction algorithm: Review Il

Add vertex ¢; for clause C;. ¢; has edge from vertex 3j and to
vertex 3j 41 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in ;.

r1 VX9 V Xy —xy VvV xe V xg
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The Reduction algorithm: Review Il

Add vertex ¢; for clause C;. ¢; has edge from vertex 3j and to
vertex 3j 41 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in ;.

r1 VX9 V Xy —xy VvV xe V xg
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Correctness Proof

Theorem ' ' . .
¢ has a satisfying assignment iff G, has a Hamiltonian cycle.

Based on proving following two lemmas.

Lemma o . _
If ¢ has a satisfying assignment then G, has a Hamilton cycle.

Lemma ' o .
If G, has a Hamilton cycle then ¢ has a satisfying assignment.

22



Satisfying assignment — Hamiltonian Cycle

Lemma o _ .
If ¢ has a satisfying assignment then G, has a Hamilton cycle.

Proof.

= Let a'be the satisfying assignment for . Define
Hamiltonian cycle as follows

- If a(x;) = 1then traverse path i from left to right

- If a(x;) = 0 then traverse path i from right to left

- For each clause, path of at least one variable is in the
“right” direction to splice in the node corresponding to
clause ]

T Nes-
2 \Hgég N
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Hamiltonian Cycle — Satisfying assignment

Suppose I is a Hamiltonian cycle in G,

Definition

We say I is canonical if for each clause vertex ¢; the edge of I
entering ¢; and edge of I leaving ¢; are from the same path
corresponding to some variable x;. Otherwise I is
non-canonical or emphcheating.

24



Hamiltonian Cycle — Satisfying assignment

Suppose I is a Hamiltonian cycle in G,

Definition

We say I is canonical if for each clause vertex ¢; the edge of I
entering ¢; and edge of I leaving ¢; are from the same path
corresponding to some variable x;. Otherwise I is
non-canonical or emphcheating.

Lemma . . '
Every Hamilton cycle in G, is canonical.

24



Proof of Lemma

Lemma . . .
Every Hamilton cycle in G, is canonical.

- If M enters ¢; (vertex for clause C;) from vertex 3j on path i
then it must leave the clause vertex on edge to 3/ + 1 on

the same path i
- If not, then only unvisited neighbor of 3/ +1 on path i is
342
- Thus, we don’t have two unvisited neighbors (one to enter
from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if I enters ¢; from vertex 3j + 1 on path i then it
must leave the clause vertex ¢; on edge to 3j on path

25



Hamiltonian Cycle = Satisfying assignment (contd)

Lemma ' ' o
Any canonical Hamilton cycle in G, corresponds to a satisfying

truth assignment to .
Consider a canonical Hamilton cycle IM.

- For every clause vertex ¢;, vertices visited immediately
before and after ¢; are connected by an edge on same
path corresponding to some variable x;

- We can remove ¢; from cycle, and get Hamiltonian cycle in
G — Cj

+ Hamiltonian cycle from M in G — {¢y,...Ccn} traverses each
path in only one direction, which determines truth
assignment

- Easy to verify that this truth assignment satisfies ¢
26



Hamiltonian cycle in undirected
graph




Hamiltonian Cycle in Undirected Graphs

Problem
Input Given undirected graph G = (V, E)
Goal Does G have a Hamiltonian cycle? That is, is there
a cycle that visits every vertex exactly one (except

start and end vertex)? ) WO
D;rc&é&' HQ é? MM-—QLI
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NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is
NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.

- Hardness proved by reducing Directed Hamiltonian Cycle
to this problem N

28



Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path

Reduction

29



Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v;,, Vv, and Vot
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v;,, Vv, and Vot

- A directed edge (a, b) is replaced by edge (aout, bin)
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Reduction Sketch

Given directed graph G, need to construct undirected
graph G’ such that G has Hamiltonian Path iff G’ has
Hamiltonian path
Reduction

- Replace each vertex v by 3 vertices: v;,, Vv, and Vout

- A directed edge (a, b) is replaced by edge (aout, bin)
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Reduction: Wrapup

- The reduction is polynomial time (exercise)

- The reduction is correct (exercise)

30



Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that
visits every vertex in G exactly once

31



Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that
visits every vertex in G exactly once

Theorem . . . . .
Directed Hamiltonian Path and Undirected Hamiltonian Path
are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or
do a reduction from Halitonian Cycle

31



Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that
visits every vertex in G exactly once

Theorem . . . . .
Directed Hamiltonian Path and Undirected Hamiltonian Path

are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or
do a reduction from Halitonian Cycle

Implies that Longest Simple Path in a graph is NP-Complete.

31



NP-Completeness of Graph Coloring




Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be col-
ored using k colors so that vertices connected by
an edge do not get the same color?

32



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

33



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

33



Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G
can be partitioned into kR independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable Iff G is bipartite! There is a linear time
algorithm to check if G is bipartite using Breadth-first-Search

34



Problems related to graph coloring




Graph Coloring and Register Allocation

Register Allocation
Assign variables to (at most) k registers such that variables

needed at the same time are not assigned to the same register

Interference Graph ‘
Vertices are variables, and there is an edge between two

vertices, If the two variables are “live” at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to
coloring the interference graph with k colors

- Moreover, 3-COLOR <p R — Register Allocation, for any
k>3

35



Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
Reduce to Graph k-Coloring problem

Create graph G

- a node v; for each class |

- an edge between v; and v; if classes i and j conflict

Exercise: G Is R-colorable Iff k rooms are sufficient

36



Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division
Multiple Access (FDMA) (example: GSM in Europe and Asia and
AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of
frequencies [ap, bol, [a1, 1], - - ., [Gk, D]

- Each cell phone tower (simplifying) gets one band

- Constraint: nearby towers cannot be assigned same band,

otherwise signals will interference

37



Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division
Multiple Access (FDMA) (example: GSM in Europe and Asia and

AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of
frequencies [ap, bol, [a1, 1], - - ., [Gk, D]

- Each cell phone tower (simplifying) gets one band

- Constraint: nearby towers cannot be assigned same band,

otherwise signals will interference

Problem: given k bands and some region with n towers, is
there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict

graph on towers.
37



Showing hardness of 3 COLORING



3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Non-deterministically guess a 3-coloring for each node

+ Check if for each edge (u, v), the color of u is different from
that of v.

- Hardness: We will show 3-SAT <p 3-Coloring.

38



Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ¢ with n variables
X1,...,Xp and m clauses G, ..., Cy. Create graph G, such that
G, Is 3-colorable iff ¢ Is satisfiable

- need to establish truth assignment for x;,..., X, via colors
for some nodes in G,.

- create triangle with node True, False, Base

- for each variable x; two nodes v; and v; connected in a
triangle with common Base

- If graph is 3-colored, either v; or v; gets the same color as
True. Interpret this as a truth assignment to v;

- Need to add constraints to ensure clauses are satisfied
(next phase)

39



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

40



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we cna think of:

]C(Xq,X2) = (X1 \/X2) (14)
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we cna think of:

]C(Xq,X2) = (X1 \/X2) (14)

Assume green=true and red=false,

40



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Let's try some stuff:

41



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable If at least one of the literals is true
- Not 3-colorable if none of the literals are true

Seems to work:



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

43



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

]C(X1,X2,X3) = (X1 V Xy \/X3) (15)
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |Is 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

]C(X1,X2,X3) = (X1 V Xy \/X3) (15)

Assume green=true and red=false,
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3 color this gadget Il

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.

A



3 color this gadget.

You are given three colors: red, green and blue. Can the
following graph be three colored in a valid way (assuming that
some of the nodes are already colored as indicated).

a Yes.
b No.
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3-coloring of the clause gadget




Reduction Idea Il - Literal Assignment |

Next we need a gadget that assigns literals. Our previously
constructed gadget assumes:

- All literals are either red or green.

- Need to limit graph so only x; or X7 is green. Other must
be red

47



Reduction Idea Il - Literal Assignment |
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Review Clause Satisfiability Gadget

For each clause ;= (aV bV ¢), create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, ¢

- needs to implement OR

OR-gadget-graph:

49



OR-Gadget Graph

Property: If a, b, c are colored False in a 3-coloring then output
node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.

50



- create triangle with nodes True, False, Base

- for each variable x; two nodes v; and v; connected in a
triangle with common Base

- for each clause (; = (a Vv b Vv ¢), add OR-gadget graph with

Input nodes a, b, c and connect output node of gadget to
both False and Base

51



Lemma
No legal 3-coloring of above graph (with coloring of nodes

T.F,B fixed) in which a, b, c are colored False. If any of a, b, c
are colored True then there is a legal 3-coloring of above
graph.
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Reduction Outline

Example
e=(UV-VVW)A(VVXV-Y)
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Correctness of Reduction

@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False
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Correctness of Reduction

@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False

- for each clause (; = (aVv bV c)atleastone of a,b,cis
colored True. OR-gadget for C; can be 3-colored such that
output is True.
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Correctness of Reduction

@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False

- for each clause (; = (aVv bV c)atleastone of a,b,cis
colored True. OR-gadget for C; can be 3-colored such that
output is True.
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Correctness of Reduction

@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False

- for each clause (; = (aVv bV c)atleastone of a,b,cis
colored True. OR-gadget for C; can be 3-colored such that
output is True.

G, Is 3-colorable implies ¢ is satisfiable

- If v; Is colored True then set x; to be True, this Is a legal
truth assignment
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Correctness of Reduction

@ Is satisfiable implies G, Is 3-colorable

- If X; Is assigned True, color v; True and v; False

- for each clause (; = (aVv bV c)atleastone of a,b,cis
colored True. OR-gadget for C; can be 3-colored such that
output is True.

G, Is 3-colorable implies ¢ is satisfiable

- If v; Is colored True then set x; to be True, this Is a legal
truth assignment

- consider any clause (; = (a Vv b v ¢). it cannot be that all
a,b,c are False. If so, output of OR-gadget for C; has to be
colored False but output is connected to Base and False!
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Graph generated in reduction from 3SAT to 3COLOR
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