

Pre-lecture brain teaser

Is the following language decidable:

Lazs = {(M)|L(M) = {0°"*}}

CS/ECE-374: Lecture 25 - SAT

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

April 22, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Is the following language decidable:

Lazs = {(M)|L(M) = {0°"*}}

The Satisfiability Problem (SAT)

Propositional Formulas

Definition .
Consider a set of boolean variables x1, X2, . . . Xp.

- Aliteral is either a boolean variable x; or its negation —x;.
- A clause is a disjunction of literals.
For example, x; V Xo V =X, is a clause.

- A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses
- (VX2 VX)) A (X2 V—x3) A xs is a CNF formula.

Propositional Formulas

Definition .
Consider a set of boolean variables x1, X2, . . . Xp.

- Aliteral is either a boolean variable x; or its negation —x;.
- A clause is a disjunction of literals.
For example, x; V Xo V =X, is a clause.
- A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses
- (VX2 VX)) A (X2 V—x3) A xs is a CNF formula.

- Aformula ¢ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

- (4 VXa Voxe) A (X V —x3 Vv Xxq) is @ 3CNF formula, but
(X1 VX2 V=X4) A (X2 V —X3) A X5 IS not.

is universal

Every boolean formula f : {0,1}" — {0,1} can be written as a

CNF formula.

x| % [xs [% [xs | %6 || FOa,%2, - x6) || 3V XaX5 Vo VG V X
oloJololo]ol] f0,...,0,0) 1
ololololol| 1] fo,..,071 1
110100 ?
1lol1]lol1]o0 0
1lol1]0]n ?
NERENERER RN) 1

For every row that f is zero compute corresponding CNF clause.

Take the and (A) of all the CNF clauses computed

Satisfiability

Problem: SAT

Instance: A formula ¢.
Question: Is there a truth assignment to the vari-
able of ¢ such that ¢ evaluates to true?

Problem: 3SAT

Instance: A formula ¢.
Question: Is there a truth assignment to the vari-
able of ¢ such that ¢ evaluates to true?

Satisfiability

SAT
Given a CNF formula ¢, is there a truth assignment to variables

such that ¢ evaluates to true?
Example
© (X1 VX2 V=Xy) A (X2 V —x3) A xs is satisfiable; take
X1,X2,...Xs to be all true
(X1 Vx2) A (—x VX)) A (=X V —xg) A (X1 V xp) is not
satisfiable.

3SAT
Given a 3CNF formula ¢, is there a truth assignment to

variables such that ¢ evaluates to true?

(More on 2SAT in a bit...)

Importance of and

- SAT and 3SAT are basic constraint satisfaction problems.

- Many different problems can reduced to them because of
the simple yet powerful expressively of logical constraints.

- Arise naturally in many applications involving hardware
and software verification and correctness.

- As we will see, it is a fundamental problem in theory of
NPCompleteness.

Given two bits x,z which of the following SAT formulas is
equivalent to the formula z = x:

(A) (ZVX)A
(B) (zVx)A
() (ZVX)A
(D)
(E)

(zVX).
(ZVX).

(ZVX)A(ZVX).

A(ZVX)A(zVX)

A(ZV X).

Given two bits x,z which of the
following SAT formulas is equiv-
alent to the formula z = x:

X|yllz=x
(A) ZVX)A(zVX). olo 0
(B) (zVX)A(ZVX). 0|1 1
(Q @VX)AEZVX)AEZVX). 110 i
(D) z&d x D
(E) ZVX)AEZVX)A(ZVX)A

(Z VX).

Given three bits x, y,z which of the following SAT formulas is
equivalent to the formulaz=x A y:

(A) ZVXVY)A(zVXVY).

(B) ZVXVY)A@EZVXVY)A(ZVXVY)

(C) @VXVY)ANEZVXVY)A@ZVXVY)A(ZVXVY).

(D) ZVXVY)AEZVXVY)A(ZVIVY)A(ZVXVY).

(B) ZVXVY)A@ZVXVY)A@EZVXVY)AZVXVY)A
(ZVXVY)ANEZVXVY)AN(ZVXVY)AN(ZVXVY).

10

Given three bits x,y,z which of
the following SAT formulas is
equivalent to the formula z =

XNY: X|y|z||z=xAy
(A) ZVXVY)A(zVXVY). 0010 1
(B) ZVXVY)AEZVXVY)A 0]0]1 0

(zVXVYy) 011]0 1
Q) @EVXVY)AEZVIVY)A 0j1]1 0

(ZVIVY)A(ZVXVY) 110]0 1
(D) (ZVXVY)A@EZVXVY)A 1]10]1 s

(ZVRVY)A(ZVRVT). S R g

_ 1711 1

(E) ZVXVY)A(ZVXVY)A

(ZVXVY)AN(ZVXVY)A

(ZVXVY)N(ZVXVY)A i

Reducing SAT to 3SAT

SAT <p 3SAT

How SAT is different from 3SAT? _
In SAT clauses might have arbitrary length: 1,2,3, ... variables:

<X\/y\/Z\/W\/U)/\(ﬂX\/—'y\/—\Z\/W\/u)/\<—\X>

In 3SAT every clause must have exactly 3 different literals.

12

SAT <p 3SAT

How SAT is different from 3SAT? _
In SAT clauses might have arbitrary length: 1,2,3, ... variables:

<X\/y\/Z\/W\/U)/\(ﬁX\/—'y\/—\Z\/W\/U)/\<—\X>

In 3SAT every clause must have exactly 3 different literals.
To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...
Basic idea
- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures! .

Overview of Complexity Classes

In the beginning...

13

In the beginning...

Undecidable

13

In the beginning...

Undecidable

In the beginning...

Undecidable

In the beginning...

Undecidable

®©

PSPACE

In the beginning...

Undecidable

13

In the beginning...

/ Undecidable \
NP — Hard

13

In the beginning...

/ Undecidable \
NP — Hard

13

In the beginning...

/ Undecidable \
NP — Hard

13

In the beginning...

/ Undecidable \
NP — Hard

13

Non-deterministic polynomial time -
NP

P and NP and Turing Machines

- P:set of decision problems that have polynomial time
algorithms.

- NP: set of decision problems that have polynomial time
non-deterministic algorithms.

- Many natural problems we would like to solve are in NP.

- Every problem in NP has an exponential time algorithm

- PCNP

- Some problems in NP are in P (example, shortest path
problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.

14

Problems with no known deterministic polynomial time algo-

rithms

Problems
- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at
all!) but many problems that we want to solve are of similar
flavor to the above.

Question: What is common to above problems?

15

Problems with no known deterministic polynomial time algo-

rithms

Problems
- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at
all!) but many problems that we want to solve are of similar
flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in
polynomial time! 15

Non-determinism in computing

Non-determinism is a special
property of algorithms.

An algorithm that is capable of
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both
paths.

If there is a path for the string
to be accepted by the machine,
then the string is part of the
language.

Deterministic

T

f(n)

LA

R

.
accept or

.
:L/ reject

Non-Deterministic

o/.\l

v ZIN
accept— e e T e

71N

f(n)

I

o — reject

* —accept

Problems with no known deterministic polynomial time algo-

rithms

Problems
- Independent Set & Vertex Cover - Can build algorithm to
check all possible collection of vertices
- Set Cover - Can check all possible collection of sets
- SAT -Can build a non-deterministic algorithm that checks
every possible boolean assignment.

But we don't have access to a non-deterministic computer. So
how can a deterministic computer verify that a algorithm is in
NP?

Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance Iy of X there is a proof/certificate/solution

that is of length poly(|ix|) such that given a proof one can
efficiently check that Iy Is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance Iy of X there is a proof/certificate/solution

that is of length poly(|ix|) such that given a proof one can
efficiently check that Iy Is indeed a YES instance.

Examples:

- SAT formula ¢: proof is a satisfying assignment.
- Independent Set in graph G and k: a subset S of vertices.
- Homework

Definition
An algorithm C(-,-) is a certifier for problem X if the following

two conditions hold:

- For every s € X there is some string t such that
C(s,t) ="yes"
- Ifs ¢ X, C(s,t) ="no" for every t.
The string s is the problem instance. (Example: particular

graph in independent set problem) The string t is called a
certificate or proof for s.

19

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.) _ _
A certifier C is an efficient certifier for problem X if there is a

polynomial p(-) such that the following conditions hold:

- For every s € X there is some string t such that
C(s,t) ="yes" and [t| < p(|s]).
- Ifs ¢ X, C(s,t) ="no" for every t.

- C(+,-) runs in polynomial time.

20

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size
> R?
- Certificate: SetSC V.
- Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.

21

Example: SAT

- Problem: Does formula ¢ have a satisfying truth
assignment?
- Certificate: Assignment a of 0/1 values to each variable.
- Certifier: Check each clause under a and say “yes” if all
clauses are true.

22

Why is it called Nondeterministic Polynomial Time

A certifier is an algorithm C(/, ¢) with two inputs:

- [: Instance.
- c: proof/certificate that the instance is indeed a YES

instance of the given problem.

One can think about C as an algorithm for the original
problem, if:

- Given I, the algorithm guesses (non-deterministically, and
who knows how) a certificate c.
- The algorithm now verifies the certificate c for the

instance I.

NP can be equivalently described using Turing machines.
23

Cook-Levin Theorem

“Hardest” Problems

Question _ _
What is the hardest problem in NP? How do we define it?

Towards a definition
- Hardest problem must be in NP.

- Hardest problem must be at least as “difficult” as every
other problem in NP.

2%

NP-Complete Problems

Definition ,
A problem X is said to be NP-Complete if

- X e NP, and
- (Hardness) Forany Y € NP, Y <p X.

25

Solving NP-Complete Problems

Lemma . . '
Suppose X is NP-Complete. Then X can be solved in polynomial

time if and only if P = NP.

Proof.

= Suppose X can be solved in polynomial time

- Let Y € NP. We know Y <p X.

- We showed that if Y <p X and X can be solved in
polynomial time, then Y can be solved in polynomial time.

- Thus, every problem Y € NP is such that Y € P, NP C P.

- Since P C NP, we have P = NP.

< Since P = NP, and X € NP, we have a polynomial time
algorithm for X. Ol

26

NP-Hard Problems

Definition
A problem Y is said to be NP-Hard if

- (Hardness) For any X € NP, we have that X <p Y.

An NP-Hard problem need not be in NP!

Fxample: Halting problem is NP-Hard (why?) but not
NP-Complete.

27

Consequences of proving NP-Completeness

If X is NP-Complete

- Since we believe P # NP,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to
find an efficient algorithm for X.

28

Consequences of proving NP-Completeness

If X is NP-Complete

- Since we believe P # NP,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to
find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

28

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

29

Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

30

Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show

- SAT is in NP.
- every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

+ Show that X is in NP.

- Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

31

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

+ Show that X is in NP.

- Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT <p X implies that every NP problem Y <p X. Why?

31

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

+ Show that X is in NP.

- Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT <p X implies that every NP problem Y <p X. Why?
Transitivity of reductions:

Y <p SAT and SAT <p X and hence Y <p X.

31

is NP-Complete

- 3-SAT is in NP
- SAT <p 3-SAT as we saw

32

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT <p 3-SAT

- 3-SAT <p Independent Set

- Independent Set <, Vertex Cover

- Independent Set < Clique

- 3-SAT <p 3-Color

- 3-SAT <p Hamiltonian Cycle

33

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT <p 3-SAT

- 3-SAT <p Independent Set

- Independent Set <, Vertex Cover

- Independent Set < Clique

- 3-SAT <p 3-Color

- 3-SAT <p Hamiltonian Cycle

Hundreds and thousands of different problems from many
areas of science and engineering have been shown to be
NP-Complete.

A surprisingly frequent phenomenon!

33

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
R?

34

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
R?

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
R?

Interpreting

There are two ways to think about 3SAT

- Find a way to assign 0/1 (false/true) to the variables such
that the formula evaluates to true, that is each clause
evaluates to true.

- Pick a literal from each clause and find a truth assignment
to make all of them true. You will fail if two of the literals
you pick are in conflict, i.e.,, you pick x; and —x;

We will take the second view of 3SAT to construct the
reduction.

35

The Reduction

- G, will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

- 5- Take k to be the number of clauses

G D)
® ®©0 ® 06 @

Figure 1: Graph for ¢ = (—=x1 VXa VX3) A (X1 V=X VX3) A (=X VX VX)) 50

The Reduction

- G, will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

- 5- Take k to be the number of clauses

C=) (=))
OROICHOION®

Figure 1 Graph for p = (ﬁX1 V Xy \/X3) A\ (X1 V =Xy \/X3) A\ (ﬁX'] V Xy \/Xz,)

36

The Reduction

- G, will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

- 5- Take k to be the number of clauses

o lle [
ofollofa o

Figure 1 Graph for p = (ﬁX1 V Xy \/X3) A\ (X1 V =Xy \/X3) A\ (ﬁX'] V Xy \/Xz,)

36

The Reduction

- G, will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

- 5- Take k to be the number of clauses

cuimcyIED
(2 F~(=)| [F—(=)| [e—(=0)

Figure 1 Graph for p = (ﬁX1 V Xy \/X3) A\ (X1 V =Xy \/X3) A\ (ﬁX'] V Xy \/Xz,)

36

The Reduction

- G, will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

- 5- Take k to be the number of clauses

Figure 1: Graph for ¢ = (—=x1 VXa VX3) A (X1 V=X VX3) A (=X VX VX)) 50

Correctness

Lemma
¢ is satisfiable iff G, has an independent set of size k (=

number of clauses in).

Proof.

= Let a be the truth assignment satisfying ¢
- 2- Pick one of the vertices, corresponding to true literals
under a, from each triangle. This is an independent set of
the appropriate size. Why? O

37

Correctness (contd)

Lemma
¢ is satisfiable iff G, has an independent set of size k (=

number of clauses in).

Proof.

< Let S be an independent set of size k

- S must contain exactly one vertex from each clause triangle

- S cannot contain vertices labeled by conflicting literals

- Thus, it is possible to obtain a truth assignment that makes
in the literals in S true; such an assignment satisfies one
literal in every clause O

38

	The Satisfiability Problem (SAT)
	Reducing SAT to 3SAT
	Overview of Complexity Classes
	Non-deterministic polynomial time - NP
	Certifiers/Verifiers

	NP-Completeness
	Cook-Levin Theorem
	Completeness
	Preliminaries

	Reducing 3-SAT to Independent Set

