For each of the following languages is the language decidable?

- $A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts } w \}$
- $A_{\text{NFA}} = \{ \langle B, w \rangle | B \text{ is a NFA that accepts } w \}$
For each of the following languages is the language decidable?

• \(A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts } w \} \)
• \(A_{NFA} = \{ \langle B, w \rangle | B \text{ is a NFA that accepts } w \} \)
Turing machines...

\textbf{TM} = Turing machine = program.
Definition
Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
Reminder: Undecidability

Definition

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
Reminder: Undecidability

Definition

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \right\}.$$
Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

Definition

A *decider* for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is *decidable*.

Turing proved the following:

Theorem

A_{TM} is undecidable.
Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$

Definition
A *decider* for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \sum^*$ whether or not $w \in L$.

A language that has a decider is *decidable*.

Turing proved the following:

Theorem
A_{TM} is undecidable.
The halting problem
A_{TM} is not TM decidable!

$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \right\}$.

Theorem (The halting theorem.)

A_{TM} is not Turing decidable.
A_{TM} is not TM decidable!

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \right\}.$$

Theorem (The halting theorem.)

A_{TM} is not Turing decidable.

Proof: Assume A_{TM} is TM decidable...
A_{TM} is not TM decidable!

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$

Theorem (The halting theorem.)

A_{TM} is not Turing decidable.

Proof: Assume A_{TM} is TM decidable...

Halt: TM deciding A_{TM}. Halt always halts, and works as follows:

$$\text{Halt}(\langle M, w \rangle) = \begin{cases}
\text{accept} & M \text{ accepts } w \\
\text{reject} & M \text{ does not accept } w.
\end{cases}$$
Halting theorem proof continued 1

We build the following new function:

<table>
<thead>
<tr>
<th>Flipper(⟨M⟩)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramifications</td>
</tr>
<tr>
<td>res ← Halt(⟨M,M⟩)</td>
</tr>
<tr>
<td>if res is accept then</td>
</tr>
<tr>
<td>reject</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>accept</td>
</tr>
</tbody>
</table>
We build the following new function:

\[
\text{Flipper} (\langle M \rangle) \\
\text{res }\leftarrow\text{Halt}(\langle M, M \rangle) \\
\text{if res is accept then} \\
\quad \text{reject} \\
\text{else} \\
\quad \text{accept}
\]

\text{Flipper always stops:}

\[
\text{Flipper} (\langle M \rangle) = \begin{cases}
\text{reject} & \text{M accepts} \langle M \rangle \\
\text{accept} & \text{M does not accept} \langle M \rangle.
\end{cases}
\]
Flipper is a TM (duh!), and as such it has an encoding \(\langle \text{Flipper} \rangle \).

Run \text{Flipper} on itself:

\[
\text{Flipper} \left(\langle M \rangle \right) = \begin{cases}
\text{reject} & M \text{ accepts } \langle M \rangle \\
\text{accept} & M \text{ does not accept } \langle M \rangle.
\end{cases}
\]

This is absurd. Ridiculous even!

Assumption that \text{Halt} exists is false.

\[\Rightarrow A \text{TM is not TM decidable.} \]
Flipper \((\langle M \rangle) = \begin{cases}
\text{reject} & M \text{ accepts } \langle M \rangle \\
\text{accept} & M \text{ does not accept } \langle M \rangle .
\end{cases} \)

Flipper is a TM (duh!), and as such it has an encoding \(\langle \text{Flipper} \rangle \).

Run Flipper on itself:

Flipper \((\langle \text{Flipper} \rangle) = \begin{cases}
\text{reject} & \text{Flipper accepts } \langle \text{Flipper} \rangle \\
\text{accept} & \text{Flipper does not accept } \langle \text{Flipper} \rangle .
\end{cases} \)

This is absurd. Ridiculous even!
\[\text{Flipper} \left(\langle M \rangle \right) = \begin{cases}
\text{reject} & M \text{ accepts } \langle M \rangle \\
\text{accept} & M \text{ does not accept } \langle M \rangle .
\end{cases} \]

\text{Flipper} is a TM (duh!), and as such it has an encoding \(\langle \text{Flipper} \rangle \). Run \text{Flipper} on itself:

\[\text{Flipper} \left(\langle \text{Flipper} \rangle \right) = \begin{cases}
\text{reject} & \text{Flipper} \text{ accepts } \langle \text{Flipper} \rangle \\
\text{accept} & \text{Flipper} \text{ does not accept } \langle \text{Flipper} \rangle .
\end{cases} \]

This is absurd. Ridiculous even!

Assumption that \text{Halt} exists is false. \(\implies A_{TM} \) is not TM decidable.
Reductions
Meta definition: Problem X reduces to problem B, if given a solution to B, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \implies Y$.
Meta definition: Problem X reduces to problem B, if given a solution to B, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \implies Y$.

Definition
oracle $ORAC$ for language L is a function that receives as a word w, returns $\text{TRUE} \iff w \in L$.
Meta definition: Problem X reduces to problem B, if given a solution to B, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \implies Y$.

Definition
oracle $ORAC$ for language L is a function that receives as a word w, returns $TRUE \iff w \in L$.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y.

We will denote this fact by $X \implies Y$.
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
Reduction proof technique

• **Y**: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **L**: language of **Y**.
Reduction proof technique

• **Y**: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• **L**: language of **Y**.
• Assume **L** is decided by **TM M**.
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **L**: language of **Y**.
- Assume **L** is decided by TM **M**.
- Create a decider for known undecidable problem **X** using **M**.
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **L**: language of **Y**.
- Assume **L** is decided by TM **M**.
- Create a decider for known undecidable problem **X** using **M**.
- Result in decider for **X** (i.e., **A_{TM}**).
Reduction proof technique

- \(Y\): Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- \(L\): language of \(Y\).
- Assume \(L\) is decided by \(TM\) \(M\).
- Create a decider for known undecidable problem \(X\) using \(M\).
- Result in decider for \(X\) (i.e., \(A_{TM}\)).
- Contradiction \(X\) is not decidable.
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **L**: language of **Y**.
- Assume **L** is decided by **TM M**.
- Create a decider for known undecidable problem **X** using **M**.
- Result in decider for **X** (i.e., \(A^{TM} \)).
- Contradiction **X** is not decidable.
- Thus, **L** must be not decidable.
Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).
Lemma
Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.
Halting
Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \right\}.$$
Lemma

The language A_{TM} reduces to A_{Halt}. Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM}.
On way to proving that Halting is undecidable...

Proof.
Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

AnotherDecider-$\text{A}_{\text{TM}}(\langle M, w \rangle)$

res ← $\text{ORAC}_{\text{Halt}}(\langle M, w \rangle)$

// if M does not halt on w then reject.
if res = reject then
 halt and reject.

// M halts on w since res = accept.
// Simulating M on w terminates in finite time.
res$_2$ ← Simulate M on w.

return res$_2$.

This procedure always return and as such its a decider for A_{TM}. □
The Halting problem is not decidable

Theorem
The language A_{Halt} is not decidable.

Proof.
Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt}, that is a decider for A_{Halt}. We can use TM_{Halt} as an implementation of an oracle for A_{Halt}, which would imply that one can build a decider for A_{TM}. However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable. □
The same proof by figure...

... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.
Emptiness
The language of empty languages

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$.
- TM_{ETM}: Assume we are given this decider for E_{TM}.
- Need to use TM_{ETM} to build a decider for A_{TM}.
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.
The language of empty languages

- \(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \).
- \(TM_{ETM} \): Assume we are given this decider for \(E_{TM} \).
- Need to use \(TM_{ETM} \) to build a decider for \(A_{TM} \).
- Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (\(w \)) disappear.
- Idea: hard-code \(w \) into \(M \), creating a TM \(M_w \) which runs \(M \) on the fixed string \(w \).
- TM \(M_w \):
 1. Input = \(x \) (which will be ignored)
 2. Simulate \(M \) on \(w \).
 3. If the simulation accepts, accept. If the simulation rejects, reject.
Embedding strings...

- Given program \(\langle M \rangle \) and input \(w \)...
- ...can output a program \(\langle M_w \rangle \).
- The program \(M_w \) simulates \(M \) on \(w \). And accepts/rejects accordingly.
- \textbf{EmbedString}(\(\langle M, w \rangle \)) input two strings \(\langle M \rangle \) and \(w \), and output a string encoding (TM) \(\langle M_w \rangle \).
• Given program $\langle M \rangle$ and input w...
• ...can output a program $\langle M_w \rangle$.
• The program M_w simulates M on w. And accepts/rejects accordingly.

• EmbedString$(\langle M, w \rangle)$ input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

• What is $L(M_w)$?
• Given program \(\langle M \rangle \) and input \(w \)...
• ...can output a program \(\langle M_w \rangle \).
• The program \(M_w \) simulates \(M \) on \(w \). And accepts/rejects accordingly.
• \textbf{EmbedString}(\(\langle M, w \rangle \)) input two strings \(\langle M \rangle \) and \(w \), and output a string encoding (TM) \(\langle M_w \rangle \).
• What is \(L(M_w) \)?
• Since \(M_w \) ignores input \(x \). language \(M_w \) is either \(\Sigma^* \) or \(\emptyset \). It is \(\Sigma^* \) if \(M \) accepts \(w \), and it is \(\emptyset \) if \(M \) does not accept \(w \).
Theorem
The language E_{TM} is undecidable.

- Assume (for contradiction), that E_{TM} is decidable.
- TM_{ETM} be its decider.
- Build decider $\text{AnotherDecider-}A_{TM}$ for A_{TM}:

$$\begin{align*}
\text{AnotherDecider-}A_{TM}(\langle M, w \rangle) \\
\langle M_w \rangle &\leftarrow \text{EmbedString}(\langle M, w \rangle) \\
r &\leftarrow TM_{ETM}(\langle M_w \rangle). \\
\text{if } r = \text{accept} \text{ then} \\
&\quad \text{return reject} \\
// TM_{ETM}(\langle M_w \rangle) \text{ rejected its input} \\
\text{return accept}
\end{align*}$$
Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, AnotherDecider-A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So AnotherDecider-A_{TM} accepts $\langle M, w \rangle$.

...must be assumption that E_{TM} is decidable is false.
Consider the possible behavior of $\text{AnotherDecider-}A_{TM}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-}A_{TM}$ rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-}A_{TM}$ accepts $\langle M, w \rangle$.

$\implies \text{AnotherDecider-}A_{TM}$ is decider for A_{TM}.

But A_{TM} is undecidable...
Emptiness is undecidable...

Consider the possible behavior of $\text{AnotherDecider-}A_{TM}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-}A_{TM}$ rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-}A_{TM}$ accepts $\langle M, w \rangle$.

$\implies \text{AnotherDecider-}A_{TM}$ is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that E_{TM} is decidable is false.
AnotherDecider-\(A_{TM}\) never actually runs the code for \(M_w\). It hands the code to a function \(TM_{ETM}\) which analyzes what the code would do if run it. So it does not matter that \(M_w\) might go into an infinite loop.
Equality
Equality is undecidable

\[EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are } TM's \text{ and } L(M) = L(N) \} . \]

Lemma

The language \(EQ_{TM} \) is undecidable.
Proof.
Suppose that we had a decider DeciderEqual for EQ_{TM}. Then we can build a decider for E_{TM} as follows:

$TM \; R$:
1. Input = $\langle M \rangle$
2. Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by $\langle T \rangle$.
3. Run DeciderEqual on $\langle M, T \rangle$.
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.
Regularity
Many undecidable languages

• Almost any property defining a TM language induces a language which is undecidable.
• proofs all have the same basic pattern.
• Regularity language:
 \[\text{Regular}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \} \].
• \textbf{DeciderRegL}: Assume TM decider for \text{Regular}_{\text{TM}}.
• Reduction from halting requires to turn problem about deciding whether a TM \(M \) accepts \(w \) (i.e., is \(w \in A_{\text{TM}} \)) into a problem about whether some TM accepts a regular set of strings.
Proof continued...

• Given M and w, consider the following TM M'_w:

 TM M'_w:
 (i) Input = x
 (ii) If x has the form $a^n b^n$, halt and accept.
 (iii) Otherwise, simulate M on w.
 (iv) If the simulation accepts, then accept.
 (v) If the simulation rejects, then reject.

• **not** executing M'_w!

• feed string $\langle M'_w \rangle$ into **DeciderRegL**

• **EmbedRegularString**: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w.

• If M accepts w, then any x accepted by M'_w: $L(M'_w) = \Sigma^*$.

• If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \geq 0\}$.

28
Proof continued...

• $a^n b^n$ is not regular...
• Use \textbf{DeciderRegL} on M'_w to distinguish these two cases.
• Note - cooked M'_w to the decider at hand.
• A decider for A_{TM} as follows.

$$\text{AnotherDecider-}A_{TM}(\langle M, w \rangle)$$

$$\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$$

$$r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).$$

\[\text{return } r\]

• If \textbf{DeciderRegL} accepts $\implies L(M'_w)$ regular (its Σ^*)
Proof continued...

- \(a^n b^n\) is not regular...
- Use \textbf{DeciderRegL} on \(M'_w\) to distinguish these two cases.
- Note - cooked \(M'_w\) to the decider at hand.
- A decider for \(A_{TM}\) as follows.

\[
\text{AnotherDecider-} A_{TM}(\langle M, w \rangle)
\]
\[
\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)
\]
\[
r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).
\]
\[
\text{return } r
\]

- If \textbf{DeciderRegL} accepts \(\Rightarrow L(M'_w) \) regular (its \(\Sigma^* \)) \(\Rightarrow M \) accepts \(w \). So \textbf{AnotherDecider-} \(A_{TM} \) should accept \(\langle M, w \rangle \).
• $a^n b^n$ is not regular...
• Use DeciderRegL on M'_w to distinguish these two cases.
• Note - cooked M'_w to the decider at hand.
• A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(⟨M, w⟩)
⟨M'_w⟩ ← EmbedRegularString(⟨M, w⟩)
  \( r ← \text{DeciderRegL}(⟨M'_w⟩). \)

return \( r \)
```
• If \(\text{DeciderRegL} \) accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So AnotherDecider-A_{TM} should accept $⟨M, w⟩$.
• If \(\text{DeciderRegL} \) rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n$
• $a^n b^n$ is not regular...
• Use **DeciderRegL** on M'_w to distinguish these two cases.
• Note - cooked M'_w to the decider at hand.
• A decider for A_{TM} as follows.

$$\text{AnotherDecider-}A_{TM}(\langle M, w \rangle)$$

$$\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$$

$$r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).$$

return r

• If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So **AnotherDecider-** A_{TM} should accept $\langle M, w \rangle$.
• If **DeciderRegL** rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n$ $\implies M$ does not accept w \implies **AnotherDecider-** A_{TM} should reject $\langle M, w \rangle$.
The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice’s Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if $L(M) = L(N)$ then $\langle M \rangle \in L \iff \langle N \rangle \in L$.

(b) The set L is “non-trivial,” i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is an undecidable.