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Pre-lecture brain teaser

For each of the following languages is the language decidable?

• ADFA = {〈B,w〉|B is a DFA that accepts w}
• ANFA = {〈B,w〉|B is a NFA that accepts w}
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Turing machines...

TM = Turing machine = program.
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Reminder: Undecidability

Definition
Language L ⊆ Σ∗ is undecidable if no program P, given w ∈ Σ∗

as input, can always stop and output whether w ∈ L or w /∈ L.

(Usually defined using TM not programs. But equivalent.
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Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition
A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w ∈ Σ∗ whether or not
w ∈ L.

A language that has a decider is decidable.

Turing proved the following:

Theorem
ATM is undecidable.
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The halting problem



ATM is not TM decidable!

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Theorem (The halting theorem.)
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable...

Halt: TM deciding ATM. Halt always halts, and works as follows:

Halt
(
〈M,w〉

)
=

accept M accepts w

reject M does not accept w.
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Halting theorem proof continued 1

We build the following new function:
Flipper(〈M〉)
res← Halt(〈M,M〉)
if res is accept then

reject
else

accept

Flipper always stops:

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉

accept M does not accept 〈M〉 .
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Halting theorem proof continued 2

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉

accept M does not accept 〈M〉 .

Flipper is a TM (duh!), and as such it has an encoding 〈Flipper〉.
Run Flipper on itself:

Flipper
(
〈Flipper〉

)
=

reject Flipper accepts 〈Flipper〉
accept Flipper does not accept 〈Flipper〉 .

This is absurd. Ridiculous even!

Assumption that Halt exists is false. =⇒ ATM is not TM
decidable.
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Reductions



Reduction

Meta definition: Problem X reduces to problem B, if given a
solution to B, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done this by X =⇒ Y.

Definition
oracle ORAC for language L is a function that receives as a
word w, returns TRUE ⇐⇒ w ∈ L.

Lemma
A language X reduces to a language Y, if one can construct a
TM decider for X using a given oracle ORACY for Y.

We will denote this fact by X =⇒ Y.
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Reduction proof technique

• Y: Problem/language for which we want to prove
undecidable.

• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using
M.

• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.
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Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X =⇒ Y. If Y
is decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X
reduces to Y , it follows that there is a procedure TX|Y (i.e.,
decider) for X that uses an oracle for Y as a subroutine. We
replace the calls to this oracle in TX|Y by calls to T. The
resulting program TX is a decider and its language is X. Thus X
is decidable (or more formally TM decidable).
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The countrapositive...

Lemma
Let X and Y be two languages, and assume that X =⇒ Y. If X
is undecidable then Y is undecidable.
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Halting



The halting problem

Language of all pairs 〈M,w〉 such that M halts on w:

AHalt =
{
〈M,w〉

∣∣∣M is a TM and M stops on w
}
.

Similar to language already known to be undecidable:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.
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On way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for
AHalt one can build a decider (that uses this oracle) for ATM.
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On way to proving that Halting is undecidable...

Proof.
Let ORACHalt be the given oracle for AHalt. We build the
following decider for ATM.
AnotherDecider-ATM

(
〈M,w〉

)
res← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.
if res = reject then

halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res2 ←Simulate M on w.
return res2.

This procedure always return and as such its a decider for
ATM.
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The Halting problem is not decidable

Theorem
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable.
As such, there is a TM, denoted by TMHalt, that is a decider for
AHalt. We can use TMHalt as an implementation of an oracle for
AHalt, which would imply that one can build a decider for ATM.
However, ATM is undecidable. A contradiction. It must be that
AHalt is undecidable.
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The same proof by figure...

〈M, w〉 〈M, w〉
TMHalt

Simulate M
on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

... if AHalt is decidable, then ATM is decidable, which is
impossible.
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Emptiness



The language of empty languages

• ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether
M accepts w.

• Restructure question to be about Turing machine having
an empty language.

• Somehow make the second input (w) disappear.

• Idea: hard-code w into M, creating a TM Mw which runs M
on the fixed string w.

• TM Mw :
1. Input = x (which will be ignored)
2. Simulate M on w.
3. If the simulation accepts, accept. If the simulation rejects,
reject.
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Embedding strings...

• Given program 〈M〉 and input w...
• ...can output a program 〈Mw〉.
• The program Mw simulates M on w. And accepts/rejects
accordingly.

• EmbedString(〈M,w〉) input two strings 〈M〉 and w, and
output a string encoding (TM) 〈Mw〉.

• What is L(Mw)?
• Since Mw ignores input x.. language Mw is either Σ∗ or ∅.
It is Σ∗ if M accepts w, and it is ∅ if M does not accept w.
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Emptiness is undecidable

Theorem
The language ETM is undecidable.

• Assume (for contradiction), that ETM is decidable.
• TMETM be its decider.
• Build decider AnotherDecider-ATM for ATM:

AnotherDecider-ATM(〈M,w〉)
〈Mw〉 ← EmbedString (〈M,w〉)
r ← TMETM(〈Mw〉).
if r = accept then

return reject
// TMETM(〈Mw〉) rejected its input
return accept
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Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-ATM on the
input 〈M,w〉.

• If TMETM accepts 〈Mw〉, then L(Mw) is empty. This implies
that M does not accept w. As such, AnotherDecider-ATM

rejects its input 〈M,w〉.
• If TMETM accepts 〈Mw〉, then L(Mw) is not empty. This
implies that M accepts w. So AnotherDecider-ATM accepts
〈M,w〉.

=⇒ AnotherDecider-ATM is decider for ATM.

But ATM is undecidable...

...must be assumption that ETM is decidable is false.
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Emptiness is undecidable via diagram

〈M, w〉
EmbedString

accept

reject

accept

reject

AnotherDecider-ATM

〈Mw〉 TMETM

AnotherDecider-ATM never actually runs the code for Mw . It
hands the code to a function TMETM which analyzes what the
code would do if run it. So it does not matter that Mw might go
into an infinite loop.

22



Equality



Equality is undecidable

EQTM =
{
〈M,N〉

∣∣∣M and N are TM’s and L(M) = L(N)
}
.

Lemma
The language EQTM is undecidable.
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Scratch

24



Proof

Proof.
Suppose that we had a decider DeciderEqual for EQTM. Then
we can build a decider for ETM as follows:

TM R:
1. Input = 〈M〉
2. Include the (constant) code for a TM T that rejects all its
input. We denote the string encoding T by 〈T〉.

3. Run DeciderEqual on 〈M, T〉.
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.
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Regularity



Many undecidable languages

• Almost any property defining a TM language induces a
language which is undecidable.

• proofs all have the same basic pattern.
• Regularity language:

RegularTM =
{
〈M〉

∣∣∣M is a TM and L(M) is regular
}
.

• DeciderRegL: Assume TM decider for RegularTM.
• Reduction from halting requires to turn problem about
deciding whether a TM M accepts w (i.e., is w ∈ ATM) into a
problem about whether some TM accepts a regular set of
strings.
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Scratch

27



Proof continued...

• Given M and w, consider the following TM M′
w :

TM M′
w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

• not executing M′
w!

• feed string 〈M′
w〉 into DeciderRegL

• EmbedRegularString: program with input 〈M〉 and w, and
outputs 〈M′

w〉, encoding the program M′
w .

• If M accepts w, then any x accepted by M′
w : L(M′

w) = Σ∗.
• If M does not accept w, then L(M′

w) =
{
anbn

∣∣ n ≥ 0}.
28



Proof continued...

• anbn is not regular...
• Use DeciderRegL on M′

w to distinguish these two cases.
• Note - cooked M′

w to the decider at hand.
• A decider for ATM as follows.

AnotherDecider-ATM(〈M,w〉)
〈M′

w〉 ← EmbedRegularString (〈M,w〉)
r ← DeciderRegL(〈M′

w〉).
return r

• If DeciderRegL accepts =⇒ L(M′
w) regular (its Σ∗)

=⇒ M
accepts w. So AnotherDecider-ATM should accept 〈M,w〉.

• If DeciderRegL rejects =⇒ L(M′
w) is not regular =⇒

L(M′
w) = anbn =⇒ M does not accept w =⇒

AnotherDecider-ATM should reject 〈M,w〉.
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Rice theorem

The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice’s Theorem.)
Suppose that L is a language of Turing machines; that is, each
word in L encodes a TM. Furthermore, assume that the
following two properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then 〈M〉 ∈ L⇔ 〈N〉 ∈ L.

(b) The set L is “non-trivial,” i.e. L 6= ∅ and L does not contain
all Turing machines.

Then L is a undecidable.
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