Finishing touches!

- Part I: models of computation (reg exps, DFA/NFA, CFGs, TMs)
- · Part II: (efficient) algorithm design
- · Part III: intractability via reductions
 - Undecidablity: problems that have no algorithms
 - NP-Completeness: problems unlikely to have efficient algorithms unless P = NP

CS/ECE-374: Lecture 22 - Reductions

Lecturer: Nickvash Kani

Chat moderator: Samir Khan

April 15, 2021

University of Illinois at Urbana-Champaign

Finishing touches!

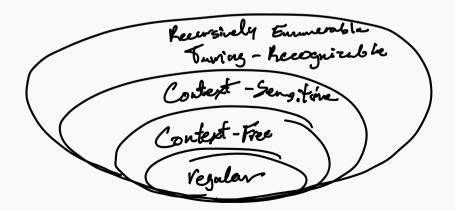
- Part I: models of computation (reg exps, DFA/NFA, CFGs, TMs)
- · Part II: (efficient) algorithm design
- · Part III: intractability via reductions
 - Undecidablity: problems that have no algorithms
 - NP-Completeness: problems unlikely to have efficient algorithms unless P = NP

Turing Machines and Church-Turing Thesis

Turing defined TMs as a machine model of computation

Church-Turing thesis: any function that is computable can be computed by TMs

Efficient Church-Turing thesis: any function that is computable can be computed by TMs with only a polynomial slow-down



Computability and Complexity Theory

- What functions can and cannot be computed by TMs?
- What functions/problems can and cannot be solved efficiently?

Why?

- Foundational questions about computation
- Pragmatic: Can we solve our problem or not?
- Are we not being clever enough to find an efficient algorithm or should we stop because there isn't one or likely to be one?

Reductions to Prove Intractability

A general methodology to prove impossibility results.

- Start with some known hard problem X
- Reduce X to your favorite problem Y

If Y can be solved then so can $X \Rightarrow Y$ is also hard

Reductions to Prove Intractability

A general methodology to prove impossibility results.

- Start with some known hard problem X
- Reduce X to your favorite problem Y

If Y can be solved then so can $X \Rightarrow Y$ is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Reductions to Prove Intractability

A general methodology to prove impossibility results.

- Start with some known hard problem X
- Reduce X to your favorite problem Y

If Y can be solved then so can $X \Rightarrow Y$ is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

- Some clever person (Cantor/Gödel/Turing/Cook/Levin ...)
 who establish hardness of a fundamental problem
- Assume some core problem is hard because we haven't been able to solve it for a long time. This leads to conditional results

Reduction Question

hard problem A Doub to prove A = (siver A general methodology to prove impossibility results.

- Start with some known hard problem X

Reduce X to your favorite problem Y

X Sp Y

HALT S A

If Y can be solved then so can $X \Rightarrow Y$ is also hard

What if we want to prove a problem is easy?

Decision Problems, Languages, Terminology

When proving hardness we limit attention to *decision* problems

- A decision problem Π is a collection of instances (strings)
- For each instance I of Π , answer is YES or NO
- Equivalently: boolean function $f_{\Pi}: \Sigma^* \to \{0,1\}$ where f(I) = 1 if I is a YES instance, f(I) = 0 if NO instance
- Equivalently: language $L_{\Pi} = \{I \mid I \text{ is a YES instance}\}$

Decision Problems, Languages, Terminology

When proving hardness we limit attention to *decision* problems

- A decision problem Π is a collection of instances (strings)
- For each instance I of Π , answer is YES or NO
- Equivalently: boolean function $f_{\Pi}: \Sigma^* \to \{0,1\}$ where f(I) = 1 if I is a YES instance, f(I) = 0 if NO instance
- Equivalently: language $L_{\Pi} = \{I \mid I \text{ is a YES instance}\}$

Notation about encoding: distinguish *I* from encoding $\langle I \rangle$

- n is an integer. $\langle n \rangle$ is the encoding of n in some format (could be unary, binary, decimal etc)
- G is a graph. $\langle G \rangle$ is the encoding of G in some format
- M is a TM. $\langle M \rangle$ is the encoding of TM as a string according to some fixed convention

Decision Problems, Languages, Terminology

Aside: Different problems can be formulated differently.

Example: Traveling Salesman

between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

Decision Formulation: Given a list of cities and the distances between each pair of cities, is there a route route that visits each city exactly once and returns to the origin city while having a shorter length than integer k. Yes / No

Examples

- Given directed graph G, is it strongly connected? $\langle G \rangle$ is a YES instance if it is, otherwise NO instance
- Given number n, is it a prime number? $L_{PRIMES} = \{\langle n \rangle \mid n \text{ is prime} \}$
- Given number n is it a composite number? $L_{COMPOSITE} = \{\langle n \rangle \mid n \text{ is a composite}\}$
- Given G = (V, E), s, t, B is the shortest path distance from s to t at most B? Instance is $\langle G, s, t, B \rangle$

Reductions: Overview

Reductions for decision problems | languages

For languages L_X , L_Y , a reduction from L_X to L_Y is:

- An algorithm ...
- Input: $w \in \Sigma^*$
- Output: $w' \in \Sigma^*$
- · Such that:

$$W \in L_X \iff W' \in L_Y$$

Reductions for decision problems/languages

For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- Input: I_X , an instance of X.
- Output: I_Y an instance of Y.
- Such that:

$$I_Y$$
 is YES instance of $Y \iff I_X$ is YES instance of X

Using reductions to solve problems

- \mathcal{R} : Reduction $X \to Y$
- A_Y : algorithm for Y:

Using reductions to solve problems

- \mathcal{R} : Reduction $X \to Y$
- A_Y : algorithm for Y:
- $\cdot \implies$ New algorithm for X:

```
\mathcal{A}_X(I_X):

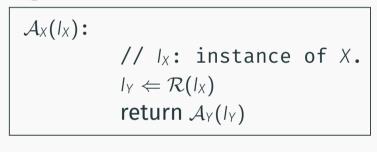
// I_X: instance of X.

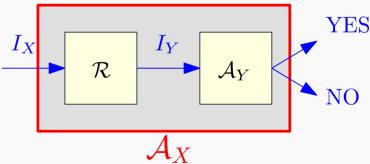
I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```

Using reductions to solve problems

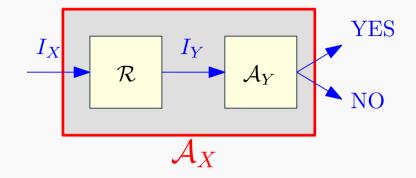
- \mathcal{R} : Reduction $X \to Y$
- A_Y : algorithm for Y:
- $\cdot \implies$ New algorithm for X:





In particular, if \mathcal{R} and \mathcal{A}_Y are polynomial-time algorithms, \mathcal{A}_X is also polynomial-time.

Reductions and running time



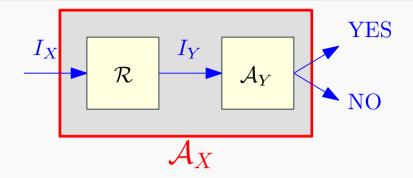
$$R(n)$$
: running time of \mathcal{R}

Q(n): running time of A_Y

Question: What is running time of A_X ?

$$|I_{r}| = |I_{Y}|$$
 $O(A_{r}) = O(R(u) + O(u))$
 $|I_{r}| = n$ $|I_{Y}| = O(u)$ $|I_{Y}| = O(R(u))$
 $A_{Y} = O(R(u))$

Reductions and running time



R(n): running time of \mathcal{R}

Q(n): running time of A_Y

Question: What is running time of A_X ? O(Q(R(n)). Why?

- If I_X has size n, \mathcal{R} creates an instance I_Y of size at most R(n)
- $\mathcal{A}_{\mathcal{Y}}$'s time on I_{Y} is by definition at most $Q(|I_{Y}|) \leq Q(R(n))$. $\mathcal{A}_{Y} = (n^{2})^{15} = n^{3}$

Example: If $R(n) = n^2$ and $Q(n) = n^{1.5}$ then A_X is $O(n^2 + n^3)$

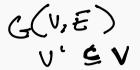
Comparing Problems

XSpY

- Reductions allow us to formalize the notion of "Problem X"
 is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write $X \le Y$), then X cannot be harder to solve than Y.
- More generally, if $X \le Y$, we can say that X is no harder than Y, or Y is at least as hard as X. $X \le Y$:
 - X is no harder than Y, or
 - Y is at least as hard as X.

Examples of Reductions

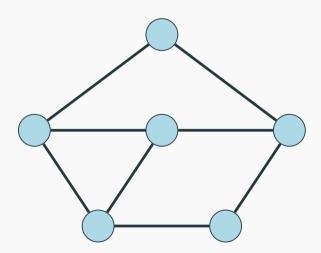
Given a graph G, a set of vertices V' is:



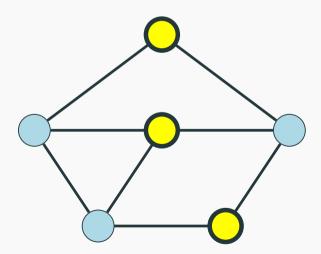
• An *independent set*: ifno two vertices of V' are connected by an edge of G.

- An *independent set*: ifno two vertices of V' areconnected by an edgeof G.
- clique: every pair of vertices in V' is connected by an edge of G.

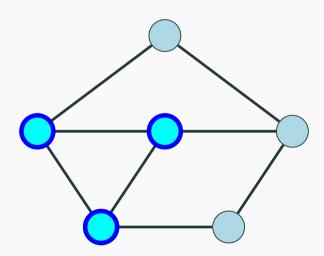
- An *independent set*: ifno two vertices of V' areconnected by an edgeof G.
- *clique*: *every* pair of vertices in V' is connected by an edge of G.



- An *independent set*: ifno two vertices of V' areconnected by an edgeof G.
- *clique*: *every* pair of vertices in V' is connected by an edge of G.



- An *independent set*: ifno two vertices of V' areconnected by an edgeof G.
- clique: every pair of vertices in V' is connected by an edge of G.



The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.

Question: Does G has an independent set of size

 $\geq k$? Les/po

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.

Question: Does G has an independent set of size

 $\geq k$?

Problem: Clique

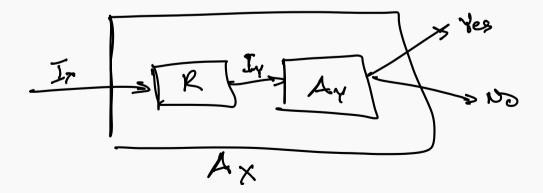
Instance: A graph G and an integer k.

Question: Does G has a clique of size $\geq k$?

Recall

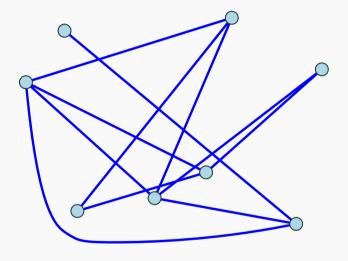
For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- that takes I_X , an instance of X as input ...
- and returns I_Y , an instance of Y as output ...
- such that the solution (YES/NO) to I_Y is the same as the solution to I_X .



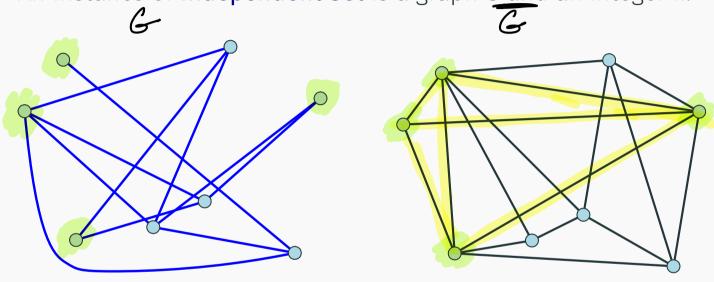
Reducing Independent Set to Clique

An instance of **Independent Set** is a graph *G* and an integer *k*.



Reducing Independent Set to Clique

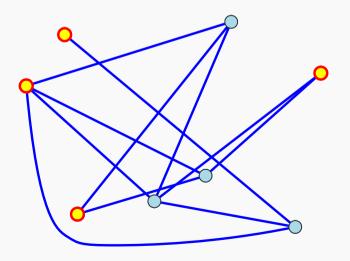
An instance of **Independent Set** is a graph *G* and an integer *k*.

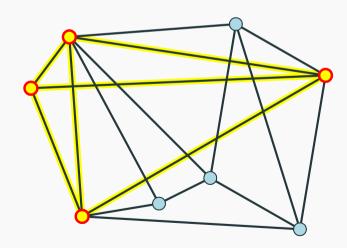


Reducing Independent Set to Clique

An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the complement of G. \overline{G} has an edge $uv \iff uv$ is not an edge of G.

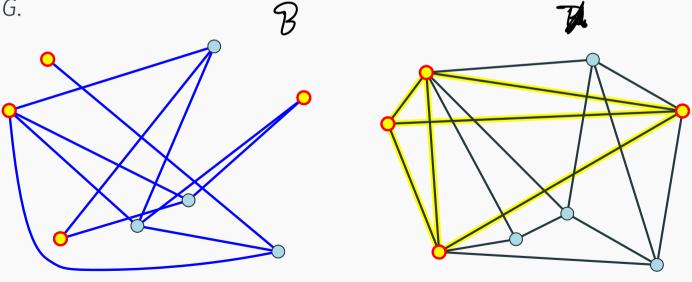




Reducing Independent Set to Clique

An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the complement of G. \overline{G} has an edge $uv \iff uv$ is not an edge of G.



A independent set of size k in $G \iff$ A clique of size k in \overline{G}

Correctness of reduction

Lemma

G has an independent set of size $k \iff \overline{G}$ has a clique of size k.

Proof.

Need to prove two facts:

G has independent set of size at least k implies that \overline{G} has a clique of size at least k.

 \overline{G} has a clique of size at least k implies that G has an independent set of size at least k.

Since $S \subseteq V$ is an independent set in $G \iff S$ is a clique in \overline{G} .

• Independent Set \leq_P Clique.

- Independent Set \leq_P Clique. What does this mean?
- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.

- Independent Set \leq_P Clique. What does this mean?
- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.
- Clique is at least as hard as Independent Set.

- Independent Set ≤_P Clique.
 What does this mean?
- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.
- Clique is at least as hard as Independent Set.
- Also... Clique \leq_P Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

I want to show Independent Set is atleast as has as Clique.

I want to show Independent Set is atleast as has as Clique. Write out the equality: Clique \le Independent Set

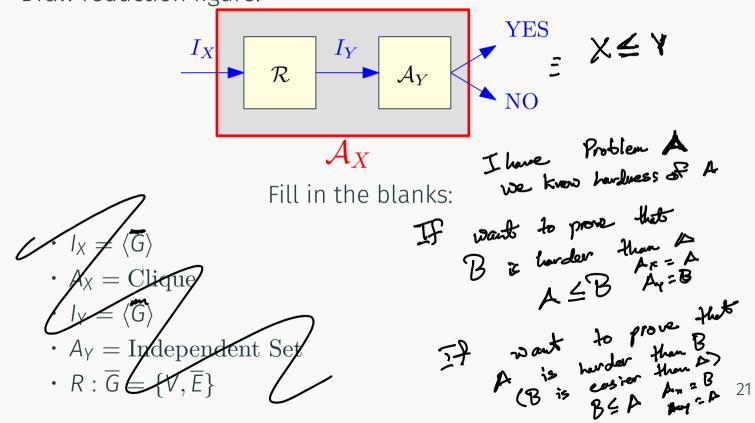
I want to show Independent Set is atleast as bas as Clique. Write out the equality: Clique < Independent Set Draw reduction figure: YES \mathcal{R} If Clique hours poly 50 letion lus poly no wind solution I.S. & Clique R: Transform & it to G by taking the edge complement

I want to show Independent Set is atleast as has as Clique.

Write out the equality: Clique

Independent Set

Draw reduction figure:



Review: Independent Set and Clique

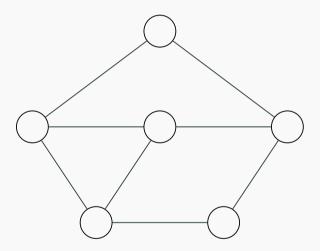
Assume you can solve the **Clique** problem in T(n) time. Then you can solve the **Independent Set** problem in

- (A) O(T(n)) time.
- (B) $O(n \log n + T(n))$ time.
- (C) $O(n^2T(n^2))$ time.
- (D) $O(n^4T(n^4))$ time.
- (E) $O(n^2 + T(n^2))$ time.
 - (F) Does not matter all these are polynomial if T(n) is polynomial, which is good enough for our purposes.

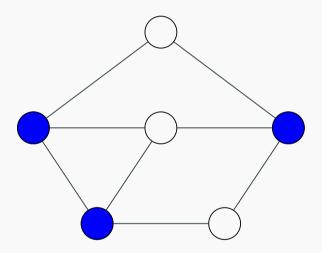
Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

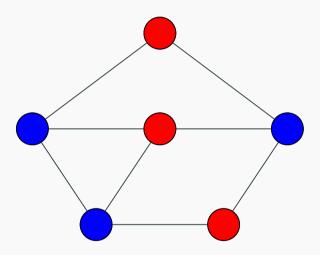
Given a graph G = (V, E), a set of vertices S is:



Given a graph G = (V, E), a set of vertices S is:



Given a graph G = (V, E), a set of vertices S is:



The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.

Goal: Is there a vertex cover of size $\leq k$ in G?

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.

Goal: Is there a vertex cover of size $\leq k$ in G?

Can we relate Independent Set and Vertex Cover?

Relationship between Vertex Cover and Independent Set

Lemma

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Relationship between Vertex Cover and Independent Set

Lemma

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let S be an independent set
 - Consider any edge $uv \in E$.
 - Since S is an independent set, either $u \notin S$ or $v \notin S$.
 - Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
 - $V \setminus S$ is a vertex cover.

Relationship between Vertex Cover and Independent Set

Lemma

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let S be an independent set
 - Consider any edge $uv \in E$.
 - Since S is an independent set, either $u \notin S$ or $v \notin S$.
 - Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
 - $V \setminus S$ is a vertex cover.
- (\Leftarrow) Let $V \setminus S$ be some vertex cover:
 - Consider $u, v \in S$
 - uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
 - $\cdot \implies S$ is thus an independent set.

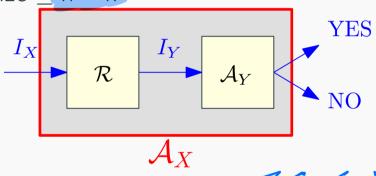
• *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.
- G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.
- G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$
- (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent Set** problem.
- G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$
- (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$

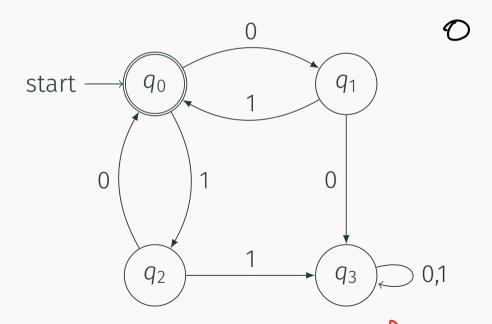


- $I_X = \langle G \rangle$
- $A_X = \text{Independent Set}(G, k)$
- $I_Y = \langle G \rangle$
- $A_Y = \text{Vertex Cover}(G, n k)$
- R : G' = G

NFAs | DFAs and Universality

Given DFA M and string $w \in \Sigma^*$, does M accept w?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO



Does above DFA accept 0010110?

Given DFA M and string $w \in \Sigma^*$, does M accept w?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO

Question: Is there an (efficient) algorithm for this problem?

Given DFA M and string $w \in \Sigma^*$, does M accept w?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO

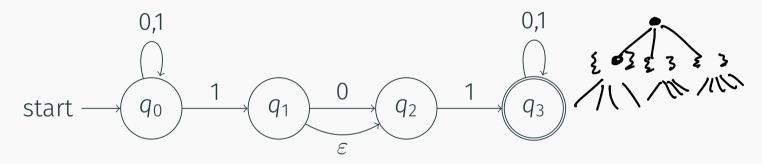
Question: Is there an (efficient) algorithm for this problem?

Yes. Simulate M on w and output YES if M reaches a final state.

Exercise: Show a linear time algorithm. Note that linear is in the input size which includes both encoding size of M and |w|.

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO



Does above NFA accept 0010110?

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

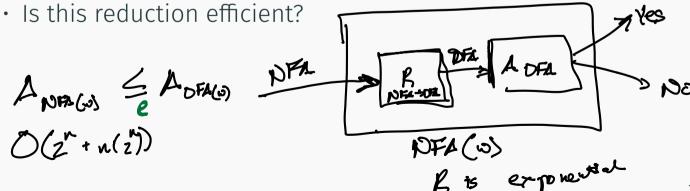
Question: Is there an algorithm for this problem?

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem? Broke Force

- Convert N to equivalent DFA M and use previous algorithm!
- Hence a reduction that takes $\langle N, w \rangle$ to $\langle M, w \rangle$



Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

- Convert N to equivalent DFA M and use previous algorithm!
- Hence a reduction that takes $\langle N, w \rangle$ to $\langle M, w \rangle$
- Is this reduction efficient? No, because |M| is exponential in |N| in the worst case.

Exercise: Describe a polynomial-time algorithm.

Hence reduction may allow you to see an easy algorithm but not necessarily best algorithm!

DFA Universality

A DFA M is universal if it accepts every string.

That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (DFA universality)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

What is the problem with this reduction?

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

What is the problem with this reduction? The reduction takes

exponential time!

NFA Universality is known to be PSPACE-Complete.

We say that an algorithm is *efficient* if it runs in polynomial-time.

We say that an algorithm is *efficient* if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

We say that an algorithm is *efficient* if it runs in polynomial-time.

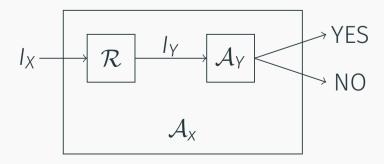
To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.

We say that an algorithm is *efficient* if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.



A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- given an instance I_X of X, A produces an instance I_Y of Y
- A runs in time polynomial in $|I_X|$.
- Answer to I_X YES \iff answer to I_Y is YES.

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- given an instance I_X of X, A produces an instance I_Y of Y
- A runs in time polynomial in $|I_X|$.
- Answer to I_X YES \iff answer to I_Y is YES.

Lemma

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a *Karp reduction*. Most reductions we will need are Karp reductions.Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Review question: Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_P Y$. Then

- (A) Y can be solved in polynomial time.
- (B) Y can NOT be solved in polynomial time.
- (C) If Y is hard then X is also hard.
- (D) None of the above.
- (E) All of the above.

Be careful about reduction direction

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y

That is, show that an algorithm for Y implies an algorithm for X.

Turing machines and reductions

Reasoning about TMs/Programs

- $\langle M \rangle$ is encoding of a TM M.
- Equivalently think of $\langle M \rangle$ as the code of a program in some high-level programming language

Reasoning about TMs/Programs

- $\langle M \rangle$ is encoding of a TM M.
- Equivalently think of $\langle M \rangle$ as the code of a program in some high-level programming language

Three related problems:

- Given (M) does M halt on blank input? (Halting Problem)
- Given $\langle M, w \rangle$ does M halt on input w?
- Given $\langle M, w \rangle$ does M accept w? (Universal Language)

Question: Do any of the above problems have an algorithm?

Reasoning about TMs/Programs

- $\langle M \rangle$ is encoding of a TM M.
- Equivalently think of $\langle M \rangle$ as the code of a program in some high-level programming language

Three related problems:

- Given (M) does M halt on blank input? (Halting Problem)
- Given $\langle M, w \rangle$ does M halt on input w?
- Given $\langle M, w \rangle$ does M accept w? (Universal Language)

Question: Do any of the above problems have an algorithm?

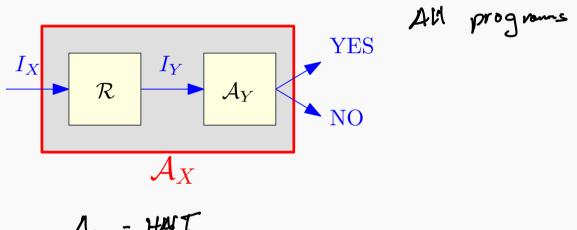
Theorem (Turing)All the three problems are undecidable! No algorithm/program/TM.

CS 125 auto grading problem:

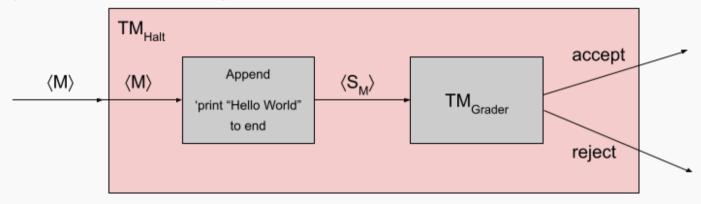
- student assignment: write program to print "Hello World"
- autograder: given student's code (S) check if it prints "Hello World" correctly

How do we reduce the halting problem to the autograding problem?! Want to prove $HALT \leq_P Grader$

How do we reduce the halting problem to the autograding problem?! Want to prove HALT $\leq_P \operatorname{Grader} \leftarrow -\operatorname{can}' + \operatorname{nubbe}$ for All programs



How do we reduce the halting problem to the autograding problem?! Want to prove $HALT \leq_P Grader$



CS 125 auto grading problem:

- student assignment: write program to print "Hello World"
- autograder: given student's code (S) check if it prints "Hello World" correctly

Impossible! Why? Reduce Halting problem to CS125 autograding

Given arbitrary program $\langle M \rangle$ reduction generates program $\langle S_M \rangle$ such that S prints "Hello World" iff M halts

- Reduction is linear time algorithm. Just copies code of M to create code for S_M with additional couple of lines
- Main point: algorithm should work correctly for *every* input not just some simple cases.