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Finishing touches!

• Part I: models of computation (reg exps, DFA/NFA, CFGs,
TMs)

• Part II: (efficient) algorithm design
• Part III: intractability via reductions

• Undecidablity: problems that have no algorithms
• NP-Completeness: problems unlikely to have efficient
algorithms unless P = NP
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Turing Machines and Church-Turing Thesis

Turing defined TMs as a machine model of computation

Church-Turing thesis: any function that is computable can be
computed by TMs

Efficient Church-Turing thesis: any function that is computable
can be computed by TMs with only a polynomial slow-down
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Computability and Complexity Theory

• What functions can and cannot be computed by TMs?
• What functions/problems can and cannot be solved
efficiently?

Why?

• Foundational questions about computation
• Pragmatic: Can we solve our problem or not?
• Are we not being clever enough to find an efficient
algorithm or should we stop because there isn’t one or
likely to be one?
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Reductions to Prove Intractability

A general methodology to prove impossibility results.

• Start with some known hard problem X
• Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

Caveat: In algorithms we reduce new problem to known solved
one!

Who gives us the initial hard problem?

• Some clever person (Cantor/Gödel/Turing/Cook/Levin ...)
who establish hardness of a fundamental problem

• Assume some core problem is hard because we haven’t
been able to solve it for a long time. This leads to
conditional results
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Reduction Question

A general methodology to prove impossibility results.

• Start with some known hard problem X
• Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

What if we want to prove a problem is easy?
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Decision Problems, Languages, Terminology

When proving hardness we limit attention to decision
problems

• A decision problem Π is a collection of instances (strings)
• For each instance I of Π, answer is YES or NO
• Equivalently: boolean function fΠ : Σ∗ → {0, 1} where
f (I) = 1 if I is a YES instance, f (I) = 0 if NO instance

• Equivalently: language LΠ = {I | I is a YES instance}

Notation about encoding: distinguish I from encoding 〈I〉

• n is an integer. 〈n〉 is the encoding of n in some format
(could be unary, binary, decimal etc)

• G is a graph. 〈G〉 is the encoding of G in some format
• M is a TM. 〈M〉 is the encoding of TM as a string according
to some fixed convention
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Decision Problems, Languages, Terminology

Aside: Different problems can be formulated differently.
Example: Traveling Salesman

Common Formulation: Given a list of cities and the distances
between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the
origin city?

Decision Formulation: Given a list of cities and the distances
between each pair of cities, is there a route route that
visits each city exactly once and returns to the origin city
while having a shorter length than integer k.
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Examples

• Given directed graph G, is it strongly connected? 〈G〉 is a
YES instance if it is, otherwise NO instance

• Given number n, is it a prime number?
LPRIMES = {〈n〉 | n is prime}

• Given number n is it a composite number?
LCOMPOSITE = {〈n〉 | n is a composite}

• Given G = (V, E), s, t,B is the shortest path distance from s
to t at most B? Instance is 〈G, s, t,B〉
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Reductions: Overview



Reductions for decision problems|languages

For languages LX, LY , a reduction from LX to LY is:

• An algorithm …
• Input: w ∈ Σ∗

• Output: w′ ∈ Σ∗

• Such that:
w ∈ LX ⇐⇒ w′ ∈ LY
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Reductions for decision problems/languages

For decision problems X, Y , a reduction from X to Y is:

• An algorithm …
• Input: IX , an instance of X.
• Output: IY an instance of Y .
• Such that:
IY is YES instance of Y ⇐⇒ IX is YES instance of X

11



Using reductions to solve problems

• R: Reduction X → Y
• AY : algorithm for Y :

• =⇒ New algorithm for X:
AX(IX):

// IX: instance of X.
IY ⇐ R(IX)
return AY(IY)

In particular, if R and AY are polynomial-time algorithms, AX is
also polynomial-time.
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Using reductions to solve problems

• R: Reduction X → Y
• AY : algorithm for Y :
• =⇒ New algorithm for X:

AX(IX):
// IX: instance of X.
IY ⇐ R(IX)
return AY(IY)

AY

IY
YES
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In particular, if R and AY are polynomial-time algorithms, AX is
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Reductions and running time

AY

IY
YES

NO

IX
R

AX

R(n): running time of R

Q(n): running time of AY

Question: What is running time of AX?

O(Q(R(n)). Why?

• If IX has size n, R creates an instance IY of size at most
R(n)

• AY ’s time on IY is by definition at most Q(|IY |) ≤ Q(R(n)).

Example: If R(n) = n2 and Q(n) = n1.5 then AX is O(n2 + n3)
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Comparing Problems

• Reductions allow us to formalize the notion of “Problem X
is no harder to solve than Problem Y”.

• If Problem X reduces to Problem Y (we write X ≤ Y), then X
cannot be harder to solve than Y .

• More generally, if X ≤ Y , we can say that X is no harder
than Y , or Y is at least as hard as X. X ≤ Y :

• X is no harder than Y , or
• Y is at least as hard as X.
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Examples of Reductions



Independent Sets and Cliques

Given a graph G, a set of vertices V′ is:

• An independent set: ifno two vertices of V′ areconnected
by an edgeof G.
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The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size
≥ k?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size ≥ k?
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Recall

For decision problems X, Y , a reduction from X to Y is:

• An algorithm …
• that takes IX , an instance of X as input …
• and returns IY , an instance of Y as output …
• such that the solution (YES/NO) to IY is the same as the
solution to IX .

17



Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.
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An instance of Independent Set is a graph G and an integer k.
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given 〈G, k〉 outputs
〈
G, k

〉
where G is the

complement of G. G has an edge uv ⇐⇒ uv is not an edge of
G.
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given 〈G, k〉 outputs
〈
G, k

〉
where G is the

complement of G. G has an edge uv ⇐⇒ uv is not an edge of
G.

A independent set of size k in G ⇐⇒ A clique of size k in G 18



Correctness of reduction

Lemma
G has an independent set of size k ⇐⇒ G has a clique of size
k.

Proof.
Need to prove two facts:
G has independent set of size at least k implies that G has a
clique of size at least k.

G has a clique of size at least k implies that G has an
independent set of size at least k.

Since S ⊆ V is an independent set in G ⇐⇒ S is a clique in
G.
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Independent Set and Clique

• Independent Set ≤P Clique.

What does this mean?
• If have an algorithm for Clique, then we have an algorithm
for Independent Set.

• Clique is at least as hard as Independent Set.
• Also... Clique ≤P Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

20
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Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as has as Clique.

Write out the equality: Clique ≤ Independent Set
Draw reduction figure:

AY

IY
YES

NO

IX
R

AX

Fill in the blanks:

• IX = 〈G〉
• AX = Clique
• IY = 〈G〉
• AY = Independent Set
• R : G = {V, E}

21



Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as has as Clique.
Write out the equality: Clique ≤ Independent Set

Draw reduction figure:

AY

IY
YES

NO

IX
R

AX

Fill in the blanks:

• IX = 〈G〉
• AX = Clique
• IY = 〈G〉
• AY = Independent Set
• R : G = {V, E}

21



Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as has as Clique.
Write out the equality: Clique ≤ Independent Set
Draw reduction figure:

AY

IY
YES

NO

IX
R

AX

Fill in the blanks:

• IX = 〈G〉
• AX = Clique
• IY = 〈G〉
• AY = Independent Set
• R : G = {V, E}

21



Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as has as Clique.
Write out the equality: Clique ≤ Independent Set
Draw reduction figure:

AY

IY
YES

NO

IX
R

AX

Fill in the blanks:

• IX = 〈G〉
• AX = Clique
• IY = 〈G〉
• AY = Independent Set
• R : G = {V, E} 21



Review: Independent Set and Clique

Assume you can solve the Clique problem in T(n) time. Then
you can solve the Independent Set problem in

(A) O(T(n)) time.
(B) O(n log n+ T(n)) time.
(C) O(n2T(n2)) time.
(D) O(n4T(n4)) time.
(E) O(n2 + T(n2)) time.
(F) Does not matter - all these are polynomial if T(n) is

polynomial, which is good enough for our purposes.
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Independent Set and Vertex Cover



Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

• A vertex cover if every e ∈ E has at least one endpoint in S.
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

24
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Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between Vertex Cover and Independent Set

Lemma
Let G = (V, E) be a graph. S is an Independent Set ⇐⇒ V \ S is
a vertex cover.

Proof.

(⇒) Let S be an independent set
• Consider any edge uv ∈ E.
• Since S is an independent set, either u 6∈ S or v 6∈ S.
• Thus, either u ∈ V \ S or v ∈ V \ S.
• V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
• Consider u, v ∈ S
• uv is not an edge of G, as otherwise V \ S does not cover uv.
• =⇒ S is thus an independent set.
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Independent Set ≤P Vertex Cover

• G: graph with n vertices, and an integer k be an instance of
the Independent Set problem.

• G has an independent set of size ≥ k ⇐⇒ G has a vertex
cover of size ≤ n− k

• (G, k) is an instance of Independent Set, and (G,n− k) is
an instance of Vertex Cover with the same answer.

• Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.
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Independent Set ≤P Vertex Cover

• G: graph with n vertices, and an integer k be an instance of
the Independent Set problem.

• G has an independent set of size ≥ k ⇐⇒ G has a vertex
cover of size ≤ n− k

AY

IY
YES

NO

IX
R

AX

• IX = 〈G〉
• AX = Independent Set(G, k)
• IY = 〈G〉
• AY = Vertex Cover(G,n− k)
• R : G′ = G 27



NFAs|DFAs and Universality



DFA Accepting a String

Given DFA M and string w ∈ Σ∗, does M accept w?

• Instance is 〈M,w〉
• Algorithm: given 〈M,w〉, output YES if M accepts w, else NO

q0start q1

q2 q3

0

1

10 0

1 0,1

Does above DFA accept 0010110? 28



DFA Accepting a String

Given DFA M and string w ∈ Σ∗, does M accept w?

• Instance is 〈M,w〉
• Algorithm: given 〈M,w〉, output YES if M accepts w, else NO

Question: Is there an (efficient) algorithm for this problem?

Yes. Simulate M on w and output YES if M reaches a final state.

Exercise: Show a linear time algorithm. Note that linear is in
the input size which includes both encoding size of M and |w|.
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NFA Accepting a String

Given NFA N and string w ∈ Σ∗, does N accept w?

• Instance is 〈N,w〉
• Algorithm: given 〈N,w〉, output YES if N accepts w, else NO

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Does above NFA accept 0010110?
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NFA Accepting a String

Given NFA N and string w ∈ Σ∗, does N accept w?

• Instance is 〈N,w〉
• Algorithm: given 〈N,w〉, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

• Convert N to equivalent DFA M and use previous algorithm!
• Hence a reduction that takes 〈N,w〉 to 〈M,w〉
• Is this reduction efficient? No, because |M| is exponential
in |N| in the worst case.

Exercise: Describe a polynomial-time algorithm.

Hence reduction may allow you to see an easy algorithm but
not necessarily best algorithm!
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DFA Universality

A DFA M is universal if it accepts every string.

That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve DFA Universality?

We check if M has any reachable non-final state.
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NFA Universality

An NFA N is said to be universal if it accepts every string. That
is, L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

What is the problem with this reduction? The reduction takes
exponential time!
NFA Universality is known to be PSPACE-Complete.

33



NFA Universality

An NFA N is said to be universal if it accepts every string. That
is, L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

What is the problem with this reduction? The reduction takes
exponential time!
NFA Universality is known to be PSPACE-Complete.

33



NFA Universality

An NFA N is said to be universal if it accepts every string. That
is, L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

What is the problem with this reduction?

The reduction takes
exponential time!
NFA Universality is known to be PSPACE-Complete.

33



NFA Universality

An NFA N is said to be universal if it accepts every string. That
is, L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

What is the problem with this reduction? The reduction takes
exponential time!
NFA Universality is known to be PSPACE-Complete.

33



Polynomial time reductions



Polynomial-time reductions

We say that an algorithm is efficient if it runs in
polynomial-time.

To find efficient algorithms for problems, we are only
interested in polynomial-time reductions. Reductions that take
longer are not useful.

If we have a polynomial-time reduction from problem X to
problem Y (we write X ≤P Y), and a poly-time algorithm AY for
Y , we have a polynomial-time/efficient algorithm for X.

Ax

R AYIX IY YES

NO
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a
decision problem Y is an algorithm A that has the following
properties:

• given an instance IX of X, A produces an instance IY of Y
• A runs in time polynomial in |IX|.
• Answer to IX YES ⇐⇒ answer to IY is YES.

Lemma
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions
we will need are Karp reductions.Karp reductions are the same
as mapping reductions when specialized to polynomial time
for the reduction step.
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Review question: Reductions again...

Let X and Y be two decision problems, such that X can be
solved in polynomial time, and X ≤P Y . Then

(A) Y can be solved in polynomial time.
(B) Y can NOT be solved in polynomial time.
(C) If Y is hard then X is also hard.
(D) None of the above.
(E) All of the above.
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Be careful about reduction direction

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y

That is, show that an algorithm for Y implies an algorithm for X.
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Turing machines and reductions



Reasoning about TMs/Programs

• 〈M〉 is encoding of a TM M.
• Equivalently think of 〈M〉 as the code of a program in some
high-level programming language

Three related problems:

• Given 〈M〉 does M halt on blank input? (Halting Problem)
• Given 〈M,w〉 does M halt on input w?
• Given 〈M,w〉 does M accept w? (Universal Language)

Question: Do any of the above problems have an algorithm?

Theorem (Turing)
All the three problems are undecidable! No
algorithm/program/TM.
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Undecidability Reductions

CS 125 auto grading problem:

• student assignment: write program to print “Hello World”
• autograder: given student’s code 〈S〉 check if it prints
“Hello World” correctly
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Undecidability Reductions

How do we reduce the halting problem to the autograding
problem?! Want to prove HALT ≤P Grader

AY

IY
YES

NO

IX
R

AX
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Undecidability Reductions

CS 125 auto grading problem:

• student assignment: write program to print “Hello World”
• autograder: given student’s code 〈S〉 check if it prints
“Hello World” correctly

Impossible! Why? Reduce Halting problem to CS125
autograding

Given arbitrary program 〈M〉 reduction generates program 〈SM〉
such that S prints “Hello World” iff M halts

• Reduction is linear time algorithm. Just copies code of M
to create code for SM with additional couple of lines

• Main point: algorithm should work correctly for every
input not just some simple cases.

More details and discussion next lecture
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