CS/ECE 374: Algorithms & Models of
Computation

Midterm 2 review
L ecture 22

CS/ECE 374 1 April 8, 2021 1/54

Part |

Recursion: Divide and Conquer

CS/ECE 374 April 8, 2021 2/54

Recursion types

© Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Binary search, Merge sort, quick sort, multiplication,
median selection.

Each sub-problem is a fraction smaller.

CS/ECE 374 April 8, 2021 3/54

© Discard half every time

CS/ECE 374 April 8, 2021 4 /54

© Discard half every time

@ Recurrence tree

l’ri\ s

('W

— logﬂ_

© Discard half every time
@ Recurrence tree
© Which condition to check?

CS/ECE 374 April 8, 2021 4 /54

Suppose you are given two sorted arrays A[l .. n] and B[1.. n]
containing distinct integers. Describe a fast algorithm to find the
median (meaning the nth smallest element) of the union AU B. For

example, given the input L
A[1..8] =[0,1,6,9,12,13,18,20] A < 4 of
¢ lemey
B[1..8] =[2,4,5,8,17,19,21, 23] . —
your algorithm should return the integer 9. é A 3

A\ Bl ’L\\ iAL <%7.
A < By

CS/ECE 374 April 8, 2021 5 /54

Suppose you are given two sorted arrays A[l .. n] and B[1.. n]
containing distinct integers. Describe a fast algorithm to find the
median (meaning the nth smallest element) of the union AU B. For
example, given the input

A[l..8] = [0,1,6,9,12,13,18, 20]

B[1..8] = [2,4,5,8,17,19, 21, 23]

your algorithm should return the integer 9.

Compare the two medians.

CS/ECE 374 April 8, 2021 5/54

MEDIAN(A[1..n],B[1..n]):
if n < 1010
use brute force
else if A[n/2] > B[n/2]
return MEDIAN(A[1..n/2],B[n/2+1..n])
else
return MEDIAN(A[n/2+1..n],B[1..n/2])

CS/ECE 374 April 8, 2021 6 /54

MEDIAN(A[1..n],B[1..n]):
if n < 1010
use brute force
else if A[n/2] > B[n/2]
return MEDIAN(A[1..n/2],B[n/2+1..n])
else
return MEDIAN(A[n/2+1..n],B[1..n/2])

Because we discard the same number of elements from each array,
the median of the remaining subarrays is the median of the original

AU B.

CS/ECE 374 April 8, 2021 6 /54

@ Divide into two halves. Together takes O(n) time.

CS/ECE 374 April 8, 2021 7 /54

@ Divide into two halves. Together takes O(n) time.

© Recurrence tree

T (n): time for merge sort to sort an n eIe(anent array U(ﬂ)
/ N /
L3 b g h bl
Ly 4

L T

o)
T

|

CS/ECE 374 April 8, 2021 7 /54

@ Divide into two halves. Together takes O(n) time.

@ Recurrence tree

T (n): time for merge sort to sort an n element array

T(n) = T(ln/2]) + T([n/2]) + cn

CS/ECE 374 April 8, 2021 7 /54

Karatsuba's Algorithm

xy = (10"%x, + xg)(10"%y, + yg)
= 10"x.y, + 10"?(x,yr + XrYL) + XRYR

Gauss trick: x yr + xryr = (x¢ + xr)(yL + YR) — XLYL — XRYR

CS/ECE 374 April 8, 2021 8 /54

Karatsuba's Algorithm

xy = (10"%x, + xg)(10"%y, + yg)
= 10"x,y; + 10"?(x,yr + XrYL) + XRYR

Gauss trick: x yr + xryL = (x¢ + xr)(yL + Yr) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (X0 + Xg) (YL + Yr)-

CS/ECE 374 April 8, 2021 8 /54

Karatsuba's Algorithm

xy = (10"%x, + xg)(10"%y, + yg)
= 10"x,y; + 10"?(x,yr + XrYL) + XRYR

Gauss trick: x yr + xryL = (x¢ + xr)(yL + Yr) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xr) (YL + YR).

Time Analysis

Running time is given by
T(n) =3T(n/2) 4+ O(n) T(1) = 0(1)

which means

v

(UIUQ) CS/ECE 374 April 8, 2021 8/54

Karatsuba's Algorithm

xy = (10"%x, + xg)(10"%y, + yg)
= 10"x,y; + 10"?(x,yr + XrYL) + XRYR

Gauss trick: x yr + xryL = (x¢ + xr)(yL + Yr) — XLYL — XRYR

Recursively compute only x.y;, XrYr, (Xt + Xr) (YL + YR).

Time Analysis

Running time is given by

T(n) =3T(n/2) + O(n) T(1) = O(1)

which means T (n) = O(n'°#23) = O(n'-3%)

v

(UIUQ) CS/ECE 374 8 April 8, 2021 8/54

Recursion tree analysis

Selecting in Unsorted Lists

@ One-armed Quick-sort

CS/ECE 374 April 8, 2021 10 /54

Selecting in Unsorted Lists

@ One-armed Quick-sort
@ With a good pivot (median of the medians)
T(n) < T([n/5]) + T([7n/10]) + O(n)

and
T(n) = 0(1) n < 10

CS/ECE 374 April 8, 2021 10 /54

Recursion tree analysis

L 4
/. |
NN 4
> N M\ I—‘—'[f)
ANVAN S
i 9 °
%g —%h ,—;tvx—m—j'f\ (—[g ql

CS/ECE 374

Part |l

Dynamic programming

CS/ECE 374 April 8, 2021 12 /54

Recursion types

© Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

CS/ECE 374 April 8, 2021 13 /54

Recursion types

© Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

© Backtracking: A sequence of decision problems. Recursion
tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n—1.

CS/ECE 374 April 8, 2021 13 /54

Recursion types

© Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

© Backtracking: A sequence of decision problems. Recursion
tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n—1.

© Dynamic Programming: Smart recursion with memoization

CS/ECE 374 April 8, 2021 13 /54

@ Changes the problem into a sequence of decision problems
@ Each tries all possibilities for the current decision

@ Recursion!

CS/ECE 374 April 8, 2021 14 /54

@ Changes the problem into a sequence of decision problems
@ Each tries all possibilities for the current decision

@ Recursion!

Text segmentation: All possibilities for next word

CS/ECE 374 April 8, 2021 14 /54

@ Changes the problem into a sequence of decision problems
@ Each tries all possibilities for the current decision

@ Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

CS/ECE 374 April 8, 2021

@ Changes the problem into a sequence of decision problems
@ Each tries all possibilities for the current decision
@ Recursion!

Text segmentation: All possibilities for next word
LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each
align with a gap

CS/ECE 374 April 8, 2021

@ Changes the problem into a sequence of decision problems
@ Each tries all possibilities for the current decision

@ Recursion!

Text segmentation: All possibilities for next word
LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each
align with a gap

Max-Weight Independent Set in Trees: Two possibilities:
Include the root or not

CS/ECE 374 April 8, 2021

How to design DP algorithms

@ Find a “smart” recursion (The hard part)

® Formulate the sub-problem
@ so that the number of distinct subproblems is small; polynomial
in the original problem size.

CS/ECE 374 April 8, 2021 15 /54

How to design DP algorithms

@ Find a “smart” recursion (The hard part)

©® Formulate the sub-problem
@ so that the number of distinct subproblems is small; polynomial
in the original problem size.

© Memoization

|dentify distinct subproblems

Choose a memoization data structure

|dentify dependencies and find a good evaluation order
An iterative algorithm replacing recursive calls with array
lookups

Further optimize space

OO0 00

©

CS/ECE 374 April 8, 2021 15 /54

Which data structure?

@ Text segmentation, suffix, 1-D array
@ Longest increasing subsequence, suffix4-index, 2-D array
e Edit distance, two prefixes, 2-D array

@ Max-Weight Independent Set in Trees, tree

CS/ECE 374 April 8, 2021 16 /54

Part Il

CS/ECE 374 April 8, 2021 17 /54

Path and cycle

A path is a sequence of distinct vertices vy, Vo, ..., Vi such that
{vi,viz1} € Eforl < i < k — 1. The length of the path is k — 1
(the number of edges in the path) and the path is from v; to v.
Note: a single vertex u is a path of length 0.

CS/ECE 374 April 8, 2021 18 /54

Path and cycle

A path is a sequence of distinct vertices vy, Vo, ..., Vi such that
{vi,viz1} € Eforl < i < k — 1. The length of the path is k — 1
(the number of edges in the path) and the path is from v; to v.
Note: a single vertex u is a path of length 0.

A cycle is a sequence of distinct vertices vy, Vo, ..., V, such that

{vi,vizi} € Eforl <i < k—1and {4, v, € E. Single vertex
not a cycle according to this definition. \/
N E <) V|j R
s -\

> _'\M Ol(g‘-au\) + W(u=S) T
d(s—=v)twp->s)]

CS/ECE 374 April 8, 2021 18 /54

Connectivity on Undirected Graphs

Given a graph G = (V, E):

ONGRO
i
F—
a‘!‘e@
®

A vertex u is connected to v if there is a path from u to v.

CS/ECE 374 April 8, 2021 19 /54

Connectivity on Undirected Graphs

Given a graph G = (V, E):

ONGRO
i
F—
a‘!‘e@
®

A vertex u is connected to v if there is a path from u to v.

The connected component of u, con(u), is the set of all vertices
connected to wu.

CS/ECE 374 April 8, 2021 19 /54

Directed Connectivity

Given a graph G = (V, E):

A vertex u can reach v if there is a path from u to v.

CS/ECE 374 April 8, 2021 20 /54

Directed Connectivity

Given a graph G = (V, E):

A vertex u can reach v if there is a path from u to v.
Let rch(u) be the set of all vertices reachable from u.

Asymmetricity: D can reach B but B cannot reach D

(UIUQ) CS/ECE 374 April 8, 2021 20/54

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach
v and v can reach u. In other words v € rch(u) and u € rch(v).

CS/ECE 374 April 8, 2021 21 /54

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach
v and v can reach u. In other words v € rch(u) and u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

CS/ECE 374 April 8, 2021 21 /54

Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach
v and v can reach u. In other words v € rch(u) and u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and
transitive.

CS/ECE 374 April 8, 2021 21 /54

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach
v and v can reach u. In other words v € rch(u) and u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C: strong connected components of G.
They partition the vertices of G.
SCC(u): strongly connected component containing u.

CS/ECE 374 April 8, 2021

Structure of a Directed Graph
(B —(<)

B,E,F | A, C,D

~_]

G H

Graph of SCCs G>“°

Reminder
GSCC

is created by collapsing every strong connected component to a
single vertex.

Proposition
For a directed graph G, its meta-graph G°°C is a DAG.

CS/ECE 374 April 8, 2021 22 /54

DAG Properties
Proposition
Every DAG G has at least one source and at least one sink.

Proposition
A directed graph G can be topologically ordered iff it is a DAG.

CS/ECE 374 April 8, 2021 23 /54

Topological Ordering/Sorting
(O—0—06)—=®

Topological Ordering of G

Definition

A topological ordering/topological sorting of G = (V, E) is an
ordering < on V such that if (u, v) € E then u < v.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.

CS/ECE 374 April 8, 2021 24 /54

DAGs and Topological Sort

What does it mean?

CS/ECE 374 April 8, 2021 25 /54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

CS/ECE 374 April 8, 2021 25 /54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza — eat the pizza, have a Coke.

CS/ECE 374 April 8, 2021 25 /54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza — eat the pizza, have a Coke.
Case 2: Circular dependence.

CS/ECE 374 April 8, 2021 25 /54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering
Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza — eat the pizza, have a Coke.
Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that
satisfies all pairwise ranking.

CS/ECE 374 April 8, 2021 25 /54

Part |V

Graph Search

CS/ECE 374 April 8, 2021 26 /54

Given G = (V,E) and vertex u € V. Let n = |V/|.

Explore(G,u) :
array Visited[1..n]
Initialize: Set Visited[i] = FALSE for 1 <i < n
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] = TRUE
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge (x,y) in Adj(x) do
if (Visited|y] == FALSE)
Visited[y] = TRUE
Add y to ToExplore
Add y to §

Output S

Running time: O(n+m)

CS/ECE 374 April 8, 2021 27 /54

Properties of Basic Search

Proposition

On an undirected graph, Explore(G, u) terminates with

S = con(u).

Proposition

On a directed graph, Explore(G, u) terminates with S = rch(u).

CS/ECE 374 April 8, 2021 28 /54

Properties of Basic Search

DFS and BFS are special case of BasicSearch.

© Depth First Search (DFS): use stack data structure to
implement the list ToExplore

@ Breadth First Search (BFS): use queue data structure to
implementing the list ToExplore

CS/ECE 374 April 8, 2021 29 /54

A depth-first and breadth-first spanning tree.

CS/ECE 374 April 8, 2021 30 /54

Algorithms via Basic Search-l|

Q@ Given G and u, compute all v that can reach v, that is all v
such that u € rch(v).

Definition (Reverse graph.)

Given G = (V, E), G"™" is the graph with edge directions reversed
G™ = (V,E’) where E’ = {(y,x) | (x,y) € E}

CS/ECE 374 April 8, 2021 31/54

Algorithms via Basic Search-l|

Q@ Given G and u, compute all v that can reach v, that is all v
such that u € rch(v).

Definition (Reverse graph.)

Given G = (V, E), G"™" is the graph with edge directions reversed
G™ = (V,E’) where E’ = {(y,x) | (x,y) € E}

Compute rch(u) in G™"!

@ Running time: O(n 4+ m) to obtain G™" from G and
O(n 4+ m) time to compute rch(u) via Basic Search.

CS/ECE 374 April 8, 2021 31/54

Algorithms via Basic Search - Il

SCC(G, u) = {v | uis strongly connected to v}

CS/ECE 374 April 8, 2021 32 /54

Algorithms via Basic Search - Il

SCC(G, u) = {v | uis strongly connected to v}

© Find the strongly connected component containing node w.
That is, compute SCC(G, u).

CS/ECE 374 April 8, 2021 32 /54

Algorithms via Basic Search - Il

SCC(G, u) = {v | uis strongly connected to v}

© Find the strongly connected component containing node wu.
That is, compute SCC(G, u).

SCC(G, u) = rch(G, u) Nrch(G"™", u)

CS/ECE 374 April 8, 2021 32 /54

Algorithms via Basic Search - Il

SCC(G, u) = {v | uis strongly connected to v}

© Find the strongly connected component containing node w.
That is, compute SCC(G, u).

SCC(G, u) = rch(G, u) Nrch(G™", u)

Hence, SCC(G, u) can be computed with Explore(G, u) and
Explore(G"™", u). Total O(n 4+ m) time.

CS/ECE 374 April 8, 2021 32 /54

Algorithms via Basic Search - |V

@ Is G strongly connected?

CS/ECE 374 April 8, 2021 33 /54

Algorithms via Basic Search - |V

@ Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G,u) = V.

CS/ECE 374 April 8, 2021 33 /54

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

for all v € V(G) do
Mark u as unvisited

T is set to 0

time = 0

while Junvisited u do
DFS(u)

OQutput T

DFS (u)

Mark u as visited
pre(u) = ++time
for each uv in Out(u) do
if v is not marked then
add edge uv to T
DFS(v)
post(u) = ++time

CS/ECE 374

April 8, 2021

34 /54

An Edge in DAG

Proposition

If Gis a DAG and post(u) < post(v), then (u, v) is not in G.
i.e., for all edges (u, v) in a DAG, post(u) > post(v).

905+ ~ = -
W, vy Uy Uy

CS/ECE 374 April 8, 2021 35 /54

Reverse post-order is topological order

CS/ECE 374 April 8, 2021 36 /54

Sort SCCs

The SCCs are topologically sorted by arranging them in decreasing

order of their highest post number. l,\-\ h‘Qﬁ' QsE
Al
B,E,F A, C,D
G \ |

Graph of SCCs G

CS/ECE 374 April 8, 2021 37 /54

Linear Time Algorithm

...for computing the strong connected components in G

do DFS(G™V) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
if u is not visited then

DFS(u)

Let S, be the nodes reached by u

Output S, as a strong connected component

Remove S, from G

Algorithm runs in time O(m 4+ n) and correctly outputs all the SCCs
of G.

CS/ECE 374 April 8, 2021 38 /54

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a
linear-time algorithm to find if there is a good node in G.

CS/ECE 374 April 8, 2021 39 /54

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a
linear-time algorithm to find if there is a good node in G.

@ First consider a DAG.
DF_S‘—?S*—%V\—))”-\/(_
S VvV VY

CS/ECE 374 April 8, 2021

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a
linear-time algorithm to find if there is a good node in G.

@ First consider a DAG.

© For any directed graph, construct the meta-graph
is a DAG.

GS€C which

CS/ECE 374 April 8, 2021 39 /54

Using DAG and SCC

A node u is good if it can reach every node in V. Describe a
linear-time algorithm to find if there is a good node in G.

@ First consider a DAG.

© For any directed graph, construct the meta-graph
is a DAG.

© The good node, if exists, has to be in the source SCC.

W

GS€C which

CS/ECE 374 April 8, 2021 39 /54

Part V

Shortest Path in Graphs

CS/ECE 374 April 8, 2021 40 /54

Breadth First Search (BFS)

@ BFS is obtained from BasicSearch by processing edges using a
data structure called a queue.

@ It processes the vertices in the graph in the order of their
shortest distance from the vertex s (the start vertex).

BFS finds shortest distance starting from s on unweighted graphs.

CS/ECE 374 April 8, 2021 41 /54

Non-negative edge length: Dijkstra

Initialize for each node v, dist(s,v) = oo
Initialize X = {s},
for i =2 to |V| do
(* Invariant: X contains the i — 1 closest nodes to s *)
Among nodes in V — X, find the node v that is the
i’th closest to s
Update dist(s, v)
X =XU{v}

CS/ECE 374 April 8, 2021 42 /54

Dijkstra’s Algorithm using Priority Queues

Q <— makePQQO
insert(Q, (s,0))
for each node u # s do
insert(Q, (u,o00))
(* Invariant: X contains the i — 1 closest nodes to s *)
(* Invariant: d’(s,u) is shortest path distance from s to u
using only X as intermediate nodesx)
X<« 0
for i =1 to |V| do
(v, dist(s, v)) = extractMin(Q)
X =XU{v}
for each v in Adj(v) do
decreaseKey(Q, (u, min(dist(s, u), dist(s, v) + £(v, u)))) :

Running time: O((m + n) log n) with heaps and O(m + nlog n)
with advanced priority queues.

CS/ECE 374 April 8, 2021 43 /54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x — .

CS/ECE 374 April 8, 2021 44 /54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x — .

©Q Detect if there is a negative length cycle.

CS/ECE 374 April 8, 2021 44 /54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one

negative edge x — y. {hOHe&
©Q Detect if there is a negative length cycle.
N

@ Remove the negative edge: G’.
X—>]

CS/ECE 374 April 8, 2021 44 /54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x — .

©Q Detect if there is a negative length cycle.

@ Remove the negative edge: G’.
® Compute the shortest distance y — x on G’.

CS/ECE 374 April 8, 2021 44 /54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x — .
©Q Detect if there is a negative length cycle.

@ Remove the negative edge: G’.
® Compute the shortest distance y — x on G’.

@ Suppose no negative length cycle, find shortest distance by

/
PEAN
dist'(s, t) }

dist’ (s, u) + w(u—v) +dist’'(v, t)

J \
/ a\Yj
G Q\’

dist(s, t) = min {

CS/ECE 374 April 8, 2021

Negative-length edges: Bellman-Ford Algorithm

for each v € V do
d(u) < oo
d(s) < 0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + £(u, v)}

for each v € V do
dist(s, v) < d(v)

Running time: O(mn)

CS/ECE 374 April 8, 2021 45 /54

Bellman-Ford: Negative Cycle Detection

Check

if distances change in iteration n.

for each u € V do
d(u) < oo
d(s) < 0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + £(u, v)}
(* One more iteration to check if distances change *)
for each v € V do
for each edge (u,v) € In(v) do
if (d(v) > d(u) + £(u, v))
Output ¢ ‘Negative Cycle’’

for each v € V do
dist(s, v) < d(v)

CS/ECE 374 April 8, 2021

Algorithm for DAGs

Observation:
© shortest path from s to v; cannot use any node from
Vitlye ooy Vp
© can find shortest paths in topological sort order.

CS/ECE 374 April 8, 2021 47 /54

Algorithm for DAGs

Let s = v, Vo, Vii1,. .., V, be a topological sort of G

for i=1 to n do
d(S, V,') = OO
d(s,s) =0

for i=1to n—1 do
for each edge (vi,v;) in Out(v;) do
d(s,vj) = min{d(s, v;), d(s, vi) + £(vi, vj) }

return d(s,-) values computed

Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.

CS/ECE 374 April 8, 2021 48 / 54

Part VI

Graph reduction and tricks

CS/ECE 374 April 8, 2021 49 /54

Split nodes

original graph
3 with vertex weights

@ . \4 @ . new graph
@ . with only edge weights

CS/ECE 374 April 8, 2021 50 /54

Add nodes

Given a graph G = (V, E) and two disjoint sets of nodes
A, B C V, is there a path from some node in A to some node in B?

A e
=L A7

CS/ECE 374 April 8, 2021 51 /54

Add nodes

Given a graph G = (V, E) and two disjoint sets of nodes
A, B C V, is there a path from some node in A to some node in B?

Connect s to each node in A, and t to each node in B. This
becomes the basic s — t reachability problem.

CS/ECE 374 April 8, 2021 51 /54

Q: How to compute the shortest distance between s and t with at
most k hops?

CS/ECE 374 April 8, 2021 52 /54

Q: How to compute the shortest distance between s and t with at
most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance
with at most k hops.
" o (I, 1<)

CS/ECE 374 April 8, 2021 52 /54

Q: How to compute the shortest distance between s and t with at
most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance
with at most k hops.

offes
Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u — v edge to
include for each v. J (g/ W D\/\ v W (Ml J\/)

A LS, W) 7 N
A (S, u_g/ '

CS/ECE 374 April 8, 2021 52 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u — v edge to
include for each v. Remove the risky nodes to form G’.

CS/ECE 374 April 8, 2021 53 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u — v edge to
include for each v. Remove the risky nodes to form G’.

iS\
/ (d(v,i—1,j) 1

d(v,i) min { dv,i,j—1)
1,] ming, ,yep d(u, i, j—1)+£(u,v) RN
7\ |\ ming, yep—p dW,i—1,7)+€(u,v)
net
rl\J\Qa

CS/ECE 374 April 8, 2021 53 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u — v edge to
include for each v. Remove the risky nodes to form G’.

(d(v,i—1,)

d(v,i,j—1)

ming, y)epr d(u,i—1,j—1)+£(u,v)
|\ ming, yep—p d(u,i—1,j)+€(w,v)

d(v,i,j) = min {

Base case: Use Bellman-Ford to compute d(v, i, 0), shortest
distance on G’ with no risky edge.
Running time: O(mnk).

CS/ECE 374 April 8, 2021 53 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

CS/ECE 374 April 8, 2021 54 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges. > Y'GW\O\/-Q i\ [(7/
© Create h + 1 copies of G": Gy, Gy, - - -

CS/ECE 374 April 8, 2021 54 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

@ Create h + 1 copies of G": Gg, Gy, ..., G
@ Include a directed edge from vertex u in G; to vertex v in Gjyq
if (u, v) is a risky edge in G.

-m 13

r

]C7 \,/

CS/ECE 374 April 8, 2021 54 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

@ Create h + 1 copies of G": Gg, Gy, ..., G

@ Include a directed edge from vertex u in G; to vertex v in Gjyq
if (u, v) is a risky edge in G.

© The idea is that the only way a path can move from one copy of
G’ to the next is by traversing a risky edge.

CS/ECE 374 April 8, 2021 54 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.
@ Create h + 1 copies of G”: Gg, G1, ..., G
@ Include a directed edge from vertex u in G; to vertex v in Gjyq
if (u, v) is a risky edge in G.
© The idea is that the only way a path can move from one copy of
G’ to the next is by traversing a risky edge.
@ Run Dijkstra’s algorithm on this new graph, from vertex sp, the
copy of s in Gg, to vy, ..., vy be the corresponding vertices in
copies Gy, . .., Gp.

CS/ECE 374 April 8, 2021 54 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

@ Create h + 1 copies of G”: Gg, G1, ..., G

@ Include a directed edge from vertex u in G; to vertex v in Gjyq
if (u, v) is a risky edge in G.

© The idea is that the only way a path can move from one copy of
G’ to the next is by traversing a risky edge.

@ Run Dijkstra’s algorithm on this new graph, from vertex sp, the
copy of s in Gg, to vg, ..., vy be the corresponding vertices in
copies Gy, . .., Gp.

@ d(so, v;) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

CS/ECE 374 April 8, 2021 54 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.

@ Create h + 1 copies of G": Gg, Gy, ..., G

@ Include a directed edge from vertex u in G; to vertex v in Gjyq
if (u, v) is a risky edge in G.

© The idea is that the only way a path can move from one copy of
G’ to the next is by traversing a risky edge.

@ Run Dijkstra’s algorithm on this new graph, from vertex sp, the
copy of s in Gg, to vy, ..., vy be the corresponding vertices in
copies Gy, . .., Gp.

@ d(so, v;) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

O the distance from s to v in the original graph that uses at most
h risky edges is just ming<;<p d(so, v;).

CS/ECE 374 April 8, 2021 54 /54

Q: A subset of risky nodes E’ C E. Find shortest path from s with
at most h risky edges.
Create h + 1 copies of G": Gy, Gy, ..., Gp
Include a directed edge from vertex u in G; to vertex v in Gjiq
if (u, v) is a risky edge in G.
The idea is that the only way a path can move from one copy of
G’ to the next is by traversing a risky edge.
Run Dijkstra’s algorithm on this new graph, from vertex sy, the
copy of s in Gg, to vg, ..., vy be the corresponding vertices in
copies Gy, . .., Gp.
@ d(so, v;) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.
O the distance from s to v in the original graph that uses at most
h risky edges is just ming<;<p d(so, v;).
Running time: O(mk + nk log(nk))

CS/ECE 374 April 8, 2021 54 /54

© 0 060

