
CS/ECE 374: Algorithms & Models of
Computation

Midterm 2 review

Lecture 22

(UIUC) CS/ECE 374 1 April 8, 2021 1 / 54

Part I

Recursion: Divide and Conquer

(UIUC) CS/ECE 374 2 April 8, 2021 2 / 54

Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Binary search, Merge sort, quick sort, multiplication,
median selection.

Each sub-problem is a fraction smaller.

(UIUC) CS/ECE 374 3 April 8, 2021 3 / 54

Binary Search

1 Discard half every time

2 Recurrence tree
3 Which condition to check?

(UIUC) CS/ECE 374 4 April 8, 2021 4 / 54

Binary Search

1 Discard half every time
2 Recurrence tree

3 Which condition to check?

(UIUC) CS/ECE 374 4 April 8, 2021 4 / 54

E F
7
log n OCleyn

7 a
T

I he

Binary Search

1 Discard half every time
2 Recurrence tree
3 Which condition to check?

(UIUC) CS/ECE 374 4 April 8, 2021 4 / 54

Binary Search

Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n]
containing distinct integers. Describe a fast algorithm to find the
median (meaning the nth smallest element) of the union A [B. For
example, given the input

A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 20]

B[1 .. 8] = [2, 4, 5, 8, 17, 19, 21, 23]

your algorithm should return the integer 9.

Compare the two medians.

(UIUC) CS/ECE 374 5 April 8, 2021 5 / 54

G
A L 4 of

eterne

Ailmedion
EAS

A B A E AL L Ba
Ar L Br E BzAz 133

Binary Search

Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n]
containing distinct integers. Describe a fast algorithm to find the
median (meaning the nth smallest element) of the union A [B. For
example, given the input

A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 20]

B[1 .. 8] = [2, 4, 5, 8, 17, 19, 21, 23]

your algorithm should return the integer 9.

Compare the two medians.

(UIUC) CS/ECE 374 5 April 8, 2021 5 / 54

Binary Search

Because we discard the same number of elements from each array,
the median of the remaining subarrays is the median of the original
A [B.

(UIUC) CS/ECE 374 6 April 8, 2021 6 / 54

Binary Search

Because we discard the same number of elements from each array,
the median of the remaining subarrays is the median of the original
A [B.

(UIUC) CS/ECE 374 6 April 8, 2021 6 / 54

Sorting

1 Divide into two halves. Together takes O(n) time.

2 Recurrence tree

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

(UIUC) CS/ECE 374 7 April 8, 2021 7 / 54

Sorting

1 Divide into two halves. Together takes O(n) time.
2 Recurrence tree

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

(UIUC) CS/ECE 374 7 April 8, 2021 7 / 54

n n OG

I I tog n E E Oftogn

Sorting

1 Divide into two halves. Together takes O(n) time.
2 Recurrence tree

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

(UIUC) CS/ECE 374 7 April 8, 2021 7 / 54

Karatsuba’s Algorithm

xy = (10
n/2

xL + xR)(10
n/2

yL + yR)

= 10
n
xLyL + 10

n/2
(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)� xLyL � xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(n
log2 3) = O(n

1.585
)

(UIUC) CS/ECE 374 8 April 8, 2021 8 / 54

Karatsuba’s Algorithm

xy = (10
n/2

xL + xR)(10
n/2

yL + yR)

= 10
n
xLyL + 10

n/2
(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)� xLyL � xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(n
log2 3) = O(n

1.585
)

(UIUC) CS/ECE 374 8 April 8, 2021 8 / 54

Karatsuba’s Algorithm

xy = (10
n/2

xL + xR)(10
n/2

yL + yR)

= 10
n
xLyL + 10

n/2
(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)� xLyL � xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means

T (n) = O(n
log2 3) = O(n

1.585
)

(UIUC) CS/ECE 374 8 April 8, 2021 8 / 54

Karatsuba’s Algorithm

xy = (10
n/2

xL + xR)(10
n/2

yL + yR)

= 10
n
xLyL + 10

n/2
(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)� xLyL � xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(n
log2 3) = O(n

1.585
)

(UIUC) CS/ECE 374 8 April 8, 2021 8 / 54

Recursion tree analysis

(UIUC) CS/ECE 374 9 April 8, 2021 9 / 54

Il tog n

I EE
h A Ign

Ei n
T increasing

01 Hn

End n z g
n 24g

3 login

n
l g3

Selecting in Unsorted Lists

1 One-armed Quick-sort

2 With a good pivot (median of the medians)

T (n)  T (dn/5e) + T (d7n/10e) + O(n)

and
T (n) = O(1) n < 10

(UIUC) CS/ECE 374 10 April 8, 2021 10 / 54

Selecting in Unsorted Lists

1 One-armed Quick-sort
2 With a good pivot (median of the medians)

T (n)  T (dn/5e) + T (d7n/10e) + O(n)

and
T (n) = O(1) n < 10

(UIUC) CS/ECE 374 10 April 8, 2021 10 / 54

Recursion tree analysis

(UIUC) CS/ECE 374 11 April 8, 2021 11 / 54

n n

I l

E Fo Fon
Il N

E's En En n jn
F n

Ocn

Part II

Dynamic programming

(UIUC) CS/ECE 374 12 April 8, 2021 12 / 54

Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

2 Backtracking: A sequence of decision problems. Recursion
tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.

3 Dynamic Programming: Smart recursion with memoization

(UIUC) CS/ECE 374 13 April 8, 2021 13 / 54

Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.
2 Backtracking: A sequence of decision problems. Recursion

tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.

3 Dynamic Programming: Smart recursion with memoization

(UIUC) CS/ECE 374 13 April 8, 2021 13 / 54

Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.
2 Backtracking: A sequence of decision problems. Recursion

tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.

3 Dynamic Programming: Smart recursion with memoization

(UIUC) CS/ECE 374 13 April 8, 2021 13 / 54

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each
align with a gap

Max-Weight Independent Set in Trees: Two possibilities:
Include the root or not

(UIUC) CS/ECE 374 14 April 8, 2021 14 / 54

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each
align with a gap

Max-Weight Independent Set in Trees: Two possibilities:
Include the root or not

(UIUC) CS/ECE 374 14 April 8, 2021 14 / 54

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each
align with a gap

Max-Weight Independent Set in Trees: Two possibilities:
Include the root or not

(UIUC) CS/ECE 374 14 April 8, 2021 14 / 54

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each
align with a gap

Max-Weight Independent Set in Trees: Two possibilities:
Include the root or not

(UIUC) CS/ECE 374 14 April 8, 2021 14 / 54

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Recursion!

Text segmentation: All possibilities for next word

LIS: Two possibilities: Include the current number or not

Edit distance: Three possibilities: align the two letters, or each
align with a gap

Max-Weight Independent Set in Trees: Two possibilities:
Include the root or not

(UIUC) CS/ECE 374 14 April 8, 2021 14 / 54

How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups
5 Further optimize space

(UIUC) CS/ECE 374 15 April 8, 2021 15 / 54

How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups
5 Further optimize space

(UIUC) CS/ECE 374 15 April 8, 2021 15 / 54

Which data structure?

Text segmentation, su�x, 1-D array

Longest increasing subsequence, su�x+index, 2-D array

Edit distance, two prefixes, 2-D array

Max-Weight Independent Set in Trees, tree

(UIUC) CS/ECE 374 16 April 8, 2021 16 / 54

Part III

Graphs

(UIUC) CS/ECE 374 17 April 8, 2021 17 / 54

Path and cycle

A path is a sequence of distinct vertices v1, v2, . . . , vk such that
{vi , vi+1} 2 E for 1  i  k � 1. The length of the path is k � 1

(the number of edges in the path) and the path is from v1 to vk .
Note: a single vertex u is a path of length 0.

A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that
{vi , vi+1} 2 E for 1  i  k � 1 and {v1, vk} 2 E . Single vertex
not a cycle according to this definition.

(UIUC) CS/ECE 374 18 April 8, 2021 18 / 54

Path and cycle

A path is a sequence of distinct vertices v1, v2, . . . , vk such that
{vi , vi+1} 2 E for 1  i  k � 1. The length of the path is k � 1

(the number of edges in the path) and the path is from v1 to vk .
Note: a single vertex u is a path of length 0.

A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that
{vi , vi+1} 2 E for 1  i  k � 1 and {v1, vk} 2 E . Single vertex
not a cycle according to this definition.

(UIUC) CS/ECE 374 18 April 8, 2021 18 / 54

LVK V J
si is time sit

Connectivity on Undirected Graphs

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

A vertex u is connected to v if there is a path from u to v .

The connected component of u, con(u), is the set of all vertices
connected to u.

(UIUC) CS/ECE 374 19 April 8, 2021 19 / 54

Connectivity on Undirected Graphs

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u � V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug

A vertex u is connected to v if there is a path from u to v .

The connected component of u, con(u), is the set of all vertices
connected to u.

(UIUC) CS/ECE 374 19 April 8, 2021 19 / 54

Directed Connectivity

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

A vertex u can reach v if there is a path from u to v .

Let rch(u) be the set of all vertices reachable from u.

Asymmetricity: D can reach B but B cannot reach D

(UIUC) CS/ECE 374 20 April 8, 2021 20 / 54

Directed Connectivity

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⇥ V � V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

A vertex u can reach v if there is a path from u to v .

Let rch(u) be the set of all vertices reachable from u.

Asymmetricity: D can reach B but B cannot reach D

(UIUC) CS/ECE 374 20 April 8, 2021 20 / 54

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 21 April 8, 2021 21 / 54

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 21 April 8, 2021 21 / 54

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 21 April 8, 2021 21 / 54

Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and

transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

(UIUC) CS/ECE 374 21 April 8, 2021 21 / 54

Structure of a Directed Graph
AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC

Reminder
GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph G
SCC

is a DAG.

(UIUC) CS/ECE 374 22 April 8, 2021 22 / 54

DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proposition
A directed graph G can be topologically ordered i↵ it is a DAG.

(UIUC) CS/ECE 374 23 April 8, 2021 23 / 54

Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V ,E) is an
ordering � on V such that if (u, v) 2 E then u � v .

Informal equivalent definition:
One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.

(UIUC) CS/ECE 374 24 April 8, 2021 24 / 54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering
Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza! eat the pizza, have a Coke.
Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that
satisfies all pairwise ranking.

(UIUC) CS/ECE 374 25 April 8, 2021 25 / 54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering
Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza! eat the pizza, have a Coke.
Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that
satisfies all pairwise ranking.

(UIUC) CS/ECE 374 25 April 8, 2021 25 / 54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering
Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza! eat the pizza, have a Coke.

Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that
satisfies all pairwise ranking.

(UIUC) CS/ECE 374 25 April 8, 2021 25 / 54

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering
Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza! eat the pizza, have a Coke.
Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that
satisfies all pairwise ranking.

(UIUC) CS/ECE 374 25 April 8, 2021 25 / 54

A B

Tcf

DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering
Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza! eat the pizza, have a Coke.
Case 2: Circular dependence.

Application: Given pairwise ranking, find an overall ranking that
satisfies all pairwise ranking.

(UIUC) CS/ECE 374 25 April 8, 2021 25 / 54

Part IV

Graph Search

(UIUC) CS/ECE 374 26 April 8, 2021 26 / 54

Basic Search

Given G = (V ,E) and vertex u 2 V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i] = FALSE for 1  i  n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] == FALSE)

Visited [y] = TRUE
Add y to ToExplore
Add y to S

Output S

Running time: O(n+m)

(UIUC) CS/ECE 374 27 April 8, 2021 27 / 54

Properties of Basic Search

Proposition
On an undirected graph, Explore(G , u) terminates with

S = con(u).

Proposition
On a directed graph, Explore(G , u) terminates with S = rch(u).

(UIUC) CS/ECE 374 28 April 8, 2021 28 / 54

Properties of Basic Search

DFS and BFS are special case of BasicSearch.
1 Depth First Search (DFS): use stack data structure to

implement the list ToExplore

2 Breadth First Search (BFS): use queue data structure to
implementing the list ToExplore

(UIUC) CS/ECE 374 29 April 8, 2021 29 / 54

Spanning tree

A depth-first and breadth-first spanning tree.

(UIUC) CS/ECE 374 30 April 8, 2021 30 / 54

Algorithms via Basic Search-II

1 Given G and u, compute all v that can reach u, that is all v
such that u 2 rch(v).

Definition (Reverse graph.)
Given G = (V ,E), G

rev is the graph with edge directions reversed
G

rev
= (V ,E 0

) where E
0
= {(y , x) | (x, y) 2 E}

Compute rch(u) in G
rev !

1 Running time: O(n + m) to obtain G
rev from G and

O(n + m) time to compute rch(u) via Basic Search.

(UIUC) CS/ECE 374 31 April 8, 2021 31 / 54

Algorithms via Basic Search-II

1 Given G and u, compute all v that can reach u, that is all v
such that u 2 rch(v).

Definition (Reverse graph.)
Given G = (V ,E), G

rev is the graph with edge directions reversed
G

rev
= (V ,E 0

) where E
0
= {(y , x) | (x, y) 2 E}

Compute rch(u) in G
rev !

1 Running time: O(n + m) to obtain G
rev from G and

O(n + m) time to compute rch(u) via Basic Search.

(UIUC) CS/ECE 374 31 April 8, 2021 31 / 54

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}

1 Find the strongly connected component containing node u.
That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G

rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 32 April 8, 2021 32 / 54

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G

rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 32 April 8, 2021 32 / 54

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G

rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 32 April 8, 2021 32 / 54

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) \ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G

rev , u). Total O(n + m) time.

(UIUC) CS/ECE 374 32 April 8, 2021 32 / 54

Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

(UIUC) CS/ECE 374 33 April 8, 2021 33 / 54

Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

(UIUC) CS/ECE 374 33 April 8, 2021 33 / 54

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

for all u 2 V (G) do

Mark u as unvisited

T is set to ;
time = 0

while 9unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then

add edge uv to T
DFS(v)

post(u) = ++time

(UIUC) CS/ECE 374 34 April 8, 2021 34 / 54

An Edge in DAG

Proposition
If G is a DAG and post(u) < post(v), then (u, v) is not in G.

i.e., for all edges (u, v) in a DAG, post(u) > post(v).

(UIUC) CS/ECE 374 35 April 8, 2021 35 / 54

post
U Uz Uz Un

Reverse post-order is topological order

a b c

d e

f g

h

(UIUC) CS/ECE 374 36 April 8, 2021 36 / 54

Sort SCCs

The SCCs are topologically sorted by arranging them in decreasing
order of their highest post number.

AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC

(UIUC) CS/ECE 374 37 April 8, 2021 37 / 54

highestpos

DFS post

Linear Time Algorithm
...for computing the strong connected components in G

do DFS(G rev
) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do

if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Theorem
Algorithm runs in time O(m + n) and correctly outputs all the SCCs

of G .

(UIUC) CS/ECE 374 38 April 8, 2021 38 / 54

Using DAG and SCC

A node u is good if it can reach every node in V . Describe a
linear-time algorithm to find if there is a good node in G .

1 First consider a DAG.
2 For any directed graph, construct the meta-graph G

SCC , which
is a DAG.

3 The good node, if exists, has to be in the source SCC.

(UIUC) CS/ECE 374 39 April 8, 2021 39 / 54

Using DAG and SCC

A node u is good if it can reach every node in V . Describe a
linear-time algorithm to find if there is a good node in G .

1 First consider a DAG.

2 For any directed graph, construct the meta-graph G
SCC , which

is a DAG.
3 The good node, if exists, has to be in the source SCC.

(UIUC) CS/ECE 374 39 April 8, 2021 39 / 54

DFS s v n

s v un

Using DAG and SCC

A node u is good if it can reach every node in V . Describe a
linear-time algorithm to find if there is a good node in G .

1 First consider a DAG.
2 For any directed graph, construct the meta-graph G

SCC , which
is a DAG.

3 The good node, if exists, has to be in the source SCC.

(UIUC) CS/ECE 374 39 April 8, 2021 39 / 54

Using DAG and SCC

A node u is good if it can reach every node in V . Describe a
linear-time algorithm to find if there is a good node in G .

1 First consider a DAG.
2 For any directed graph, construct the meta-graph G

SCC , which
is a DAG.

3 The good node, if exists, has to be in the source SCC.

(UIUC) CS/ECE 374 39 April 8, 2021 39 / 54

T

Part V

Shortest Path in Graphs

(UIUC) CS/ECE 374 40 April 8, 2021 40 / 54

Breadth First Search (BFS)

Overview
(A) BFS is obtained from BasicSearch by processing edges using a

data structure called a queue.
(B) It processes the vertices in the graph in the order of their

shortest distance from the vertex s (the start vertex).

BFS finds shortest distance starting from s on unweighted graphs.

(UIUC) CS/ECE 374 41 April 8, 2021 41 / 54

Non-negative edge length: Dijkstra

Initialize for each node v, dist(s, v) =1
Initialize X = {s},
for i = 2 to |V | do

(* Invariant: X contains the i � 1 closest nodes to s *)

Among nodes in V � X, find the node v that is the

i’th closest to s
Update dist(s, v)
X = X [{v}

(UIUC) CS/ECE 374 42 April 8, 2021 42 / 54

Dijkstra’s Algorithm using Priority Queues

Q makePQ()

insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,1))

(* Invariant: X contains the i � 1 closest nodes to s *)

(* Invariant: d 0
(s, u) is shortest path distance from s to u

using only X as intermediate nodes*)

X ;
for i = 1 to |V | do

(v , dist(s, v)) = extractMin(Q)

X = X [{v}
for each u in Adj(v) do

decreaseKey

⇣
Q,

�
u,min

�
dist(s, u), dist(s, v) + `(v , u)

��⌘
.

Running time: O((m + n) log n) with heaps and O(m + n log n)

with advanced priority queues.

(UIUC) CS/ECE 374 43 April 8, 2021 43 / 54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x ! y .

1 Detect if there is a negative length cycle.
1 Remove the negative edge: G 0.
2 Compute the shortest distance y ! x on G 0.

2 Suppose no negative length cycle, find shortest distance by

(UIUC) CS/ECE 374 44 April 8, 2021 44 / 54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x ! y .

1 Detect if there is a negative length cycle.

1 Remove the negative edge: G 0.
2 Compute the shortest distance y ! x on G 0.

2 Suppose no negative length cycle, find shortest distance by

(UIUC) CS/ECE 374 44 April 8, 2021 44 / 54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x ! y .

1 Detect if there is a negative length cycle.
1 Remove the negative edge: G 0.

2 Compute the shortest distance y ! x on G 0.

2 Suppose no negative length cycle, find shortest distance by

(UIUC) CS/ECE 374 44 April 8, 2021 44 / 54

Portes
x y

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x ! y .

1 Detect if there is a negative length cycle.
1 Remove the negative edge: G 0.
2 Compute the shortest distance y ! x on G 0.

2 Suppose no negative length cycle, find shortest distance by

(UIUC) CS/ECE 374 44 April 8, 2021 44 / 54

One negative edge: Use Dijkstra

Compute the shortest path from s to t on a graph with exactly one
negative edge x ! y .

1 Detect if there is a negative length cycle.
1 Remove the negative edge: G 0.
2 Compute the shortest distance y ! x on G 0.

2 Suppose no negative length cycle, find shortest distance by

(UIUC) CS/ECE 374 44 April 8, 2021 44 / 54

C

t IG G

Negative-length edges: Bellman-Ford Algorithm

for each u 2 V do

d(u) 1
d(s) 0

for k = 1 to n � 1 do

for each v 2 V do

for each edge (u, v) 2 In(v) do

d(v) = min{d(v), d(u) + `(u, v)}

for each v 2 V do

dist(s, v) d(v)

Running time: O(mn)

(UIUC) CS/ECE 374 45 April 8, 2021 45 / 54

Bellman-Ford: Negative Cycle Detection

Check if distances change in iteration n.

for each u 2 V do

d(u) 1
d(s) 0

for k = 1 to n � 1 do

for each v 2 V do

for each edge (u, v) 2 In(v) do

d(v) = min{d(v), d(u) + `(u, v)}
(* One more iteration to check if distances change *)

for each v 2 V do

for each edge (u, v) 2 In(v) do

if (d(v) > d(u) + `(u, v))
Output ‘‘Negative Cycle’’

for each v 2 V do

dist(s, v) d(v)

(UIUC) CS/ECE 374 46 April 8, 2021 46 / 54

Algorithm for DAGs

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn

2 can find shortest paths in topological sort order.

(UIUC) CS/ECE 374 47 April 8, 2021 47 / 54

Algorithm for DAGs

Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

for i = 1 to n do

d(s, vi) =1
d(s, s) = 0

for i = 1 to n � 1 do

for each edge (vi , vj) in Out(vi) do

d(s, vj) = min{d(s, vj), d(s, vi) + `(vi , vj)}

return d(s, ·) values computed

Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.

(UIUC) CS/ECE 374 48 April 8, 2021 48 / 54

Part VI

Graph reduction and tricks

(UIUC) CS/ECE 374 49 April 8, 2021 49 / 54

Split nodes

(UIUC) CS/ECE 374 50 April 8, 2021 50 / 54

Add nodes

Given a graph G = (V ,E) and two disjoint sets of nodes
A,B ⇢ V , is there a path from some node in A to some node in B?

Connect s to each node in A, and t to each node in B. This
becomes the basic s � t reachability problem.

(UIUC) CS/ECE 374 51 April 8, 2021 51 / 54

5

Add nodes

Given a graph G = (V ,E) and two disjoint sets of nodes
A,B ⇢ V , is there a path from some node in A to some node in B?

Connect s to each node in A, and t to each node in B. This
becomes the basic s � t reachability problem.

(UIUC) CS/ECE 374 51 April 8, 2021 51 / 54

DP on graphs

Q: How to compute the shortest distance between s and t with at
most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance
with at most k hops.

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u ! v edge to
include for each v .

(UIUC) CS/ECE 374 52 April 8, 2021 52 / 54

DP on graphs

Q: How to compute the shortest distance between s and t with at
most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance
with at most k hops.

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u ! v edge to
include for each v .

(UIUC) CS/ECE 374 52 April 8, 2021 52 / 54

din k

DP on graphs

Q: How to compute the shortest distance between s and t with at
most k hops?

Ans: We arrived at Bellman-Ford by considering the shortest distance
with at most k hops.

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u ! v edge to
include for each v .

(UIUC) CS/ECE 374 52 April 8, 2021 52 / 54

eydes

If If E

DP on graphs

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u ! v edge to
include for each v . Remove the risky nodes to form G

0.

Base case: Use Bellman-Ford to compute d(v , i , 0), shortest
distance on G

0 with no risky edge.
Running time: O(mnk).

(UIUC) CS/ECE 374 53 April 8, 2021 53 / 54

DP on graphs

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u ! v edge to
include for each v . Remove the risky nodes to form G

0.

Base case: Use Bellman-Ford to compute d(v , i , 0), shortest
distance on G

0 with no risky edge.
Running time: O(mnk).

(UIUC) CS/ECE 374 53 April 8, 2021 53 / 54

Y
Iz zu ou

not

risky

DP on graphs

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.

Ans: Use Bellman-Ford style DP. Consider which u ! v edge to
include for each v . Remove the risky nodes to form G

0.

Base case: Use Bellman-Ford to compute d(v , i , 0), shortest
distance on G

0 with no risky edge.
Running time: O(mnk).

(UIUC) CS/ECE 374 53 April 8, 2021 53 / 54

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.

1 Create h + 1 copies of G
0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .
3 The idea is that the only way a path can move from one copy of

G
0 to the next is by traversing a risky edge.

4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))

(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.
1 Create h + 1 copies of G

0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .
3 The idea is that the only way a path can move from one copy of

G
0 to the next is by traversing a risky edge.

4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))

(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

remove risky

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.
1 Create h + 1 copies of G

0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .

3 The idea is that the only way a path can move from one copy of
G

0 to the next is by traversing a risky edge.
4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the

copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))

(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

Ky
miI

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.
1 Create h + 1 copies of G

0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .
3 The idea is that the only way a path can move from one copy of

G
0 to the next is by traversing a risky edge.

4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))

(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.
1 Create h + 1 copies of G

0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .
3 The idea is that the only way a path can move from one copy of

G
0 to the next is by traversing a risky edge.

4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))

(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.
1 Create h + 1 copies of G

0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .
3 The idea is that the only way a path can move from one copy of

G
0 to the next is by traversing a risky edge.

4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))

(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.
1 Create h + 1 copies of G

0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .
3 The idea is that the only way a path can move from one copy of

G
0 to the next is by traversing a risky edge.

4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))

(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

Layering

Q: A subset of risky nodes E
0 ⇢ E . Find shortest path from s with

at most h risky edges.
1 Create h + 1 copies of G

0: G0,G1, . . . ,Gh

2 Include a directed edge from vertex u in Gi to vertex v in Gi+1

if (u, v) is a risky edge in G .
3 The idea is that the only way a path can move from one copy of

G
0 to the next is by traversing a risky edge.

4 Run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0, to v0, . . . , vh be the corresponding vertices in
copies G0, . . . ,Gh.

5 d(s0, vi) is just the shortest path from s to v in the original
graph G that uses exactly i risky edges.

6 the distance from s to v in the original graph that uses at most
h risky edges is just min0ih d(s0, vi).

Running time: O(mk + nk log(nk))
(UIUC) CS/ECE 374 54 April 8, 2021 54 / 54

