
CS/ECE 374: Algorithms & Models of

Computation

Shortest Paths: DAG and
Floyd-Warshall
Lecture 18

(UIUC) CS/ECE 374 1 April 6, 2021 1 / 22



Part I

The Crucial Optimality Substructure

(UIUC) CS/ECE 374 2 April 6, 2021 2 / 22



Shortest distance problems

Optimality substructure:

dist(s, u) = minv∈In(u) [dist(s, v) + `(v , u)]

Bellman-Ford: d(u) = minv∈In(u) [d(v) + `(v , u)]

1 If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.

2 Initialize d(s) = 0, all d(u) =∞, converge to the fixed point.

(UIUC) CS/ECE 374 3 April 6, 2021 3 / 22



Shortest distance problems

Optimality substructure:

dist(s, u) = minv∈In(u) [dist(s, v) + `(v , u)]

Bellman-Ford: d(u) = minv∈In(u) [d(v) + `(v , u)]

1 If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.

2 Initialize d(s) = 0, all d(u) =∞, converge to the fixed point.

(UIUC) CS/ECE 374 3 April 6, 2021 3 / 22



Shortest distance problems

Optimality substructure:

dist(s, u) = minv∈In(u) [dist(s, v) + `(v , u)]

Bellman-Ford: d(u) = minv∈In(u) [d(v) + `(v , u)]

1 If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.

2 Initialize d(s) = 0, all d(u) =∞, converge to the fixed point.

(UIUC) CS/ECE 374 3 April 6, 2021 3 / 22



Shortest distance problems

Optimality substructure:

dist(s, u) = minv∈In(u) [dist(s, v) + `(v , u)]

Bellman-Ford: d(u) = minv∈In(u) [d(v) + `(v , u)]

1 If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.

2 Initialize d(s) = 0, all d(u) =∞, converge to the fixed point.

(UIUC) CS/ECE 374 3 April 6, 2021 3 / 22



Example

s

a c

b

d f

e

6 3

4

�1
�3

0 5

8

�3

�8 2

1

(UIUC) CS/ECE 374 16 April 1, 2021 16 / 36

0 I 2 3 4 5 G

S O 0 O O O O 0

a I 6 L I I 2

s Esa b 4 2 2 2 2 2

Idf c 3 3 3 3 3 3
d I 2 2 I I

Feb e I 9 T 9
IT f I 7 7 7 7
s c

t 3 fI gd fee f



Example

s

a c

b

d f

e

6 3

4

−1
−3

0 5

8

−3

−8 2

1

(UIUC) CS/ECE 374 4 April 6, 2021 4 / 22



Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = minv∈In(u) [dist(s, v) + `(v , u)]

Dijkstra: d(u) = minv∈In(u),v∈X [d(v) + `(v , u)]

1 v in X is known to have d(v) = d(s, v)
2 Only update u adjacent to X . Each edge is only updated once.

3 A good evaluation order saves a lot of work. We will see it again
with DAG.

(UIUC) CS/ECE 374 5 April 6, 2021 5 / 22



Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = minv∈In(u) [dist(s, v) + `(v , u)]

Dijkstra: d(u) = minv∈In(u),v∈X [d(v) + `(v , u)]

1 v in X is known to have d(v) = d(s, v)

2 Only update u adjacent to X . Each edge is only updated once.

3 A good evaluation order saves a lot of work. We will see it again
with DAG.

(UIUC) CS/ECE 374 5 April 6, 2021 5 / 22



Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = minv∈In(u) [dist(s, v) + `(v , u)]

Dijkstra: d(u) = minv∈In(u),v∈X [d(v) + `(v , u)]

1 v in X is known to have d(v) = d(s, v)
2 Only update u adjacent to X . Each edge is only updated once.

3 A good evaluation order saves a lot of work. We will see it again
with DAG.

(UIUC) CS/ECE 374 5 April 6, 2021 5 / 22



Shortest distance problems

Why didn’t we use

dist(s, u) = minv [dist(s, v) + dist(v , u)] ?

Bellman-Ford? d(u) = minv [d(v) + d(v , u)]?

1 We will need to compute d(v , u), for all v , when we only need
distances from s. Extra work.

2 Will be useful for computing all-pair shortest distance.
Floyd-Warshall

(UIUC) CS/ECE 374 6 April 6, 2021 6 / 22



Shortest distance problems

Why didn’t we use

dist(s, u) = minv [dist(s, v) + dist(v , u)] ?

Bellman-Ford? d(u) = minv [d(v) + d(v , u)]?

1 We will need to compute d(v , u), for all v , when we only need
distances from s. Extra work.

2 Will be useful for computing all-pair shortest distance.
Floyd-Warshall

(UIUC) CS/ECE 374 6 April 6, 2021 6 / 22



Shortest distance problems

Why didn’t we use

dist(s, u) = minv [dist(s, v) + dist(v , u)] ?

Bellman-Ford? d(u) = minv [d(v) + d(v , u)]?

1 We will need to compute d(v , u), for all v , when we only need
distances from s. Extra work.

2 Will be useful for computing all-pair shortest distance.
Floyd-Warshall

(UIUC) CS/ECE 374 6 April 6, 2021 6 / 22



Part II

Shortest Paths in DAGs

(UIUC) CS/ECE 374 7 April 6, 2021 7 / 22



Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1 No cycles and hence no negative length cycles!

2 Can order nodes using topological sort

(UIUC) CS/ECE 374 8 April 6, 2021 8 / 22



Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1 No cycles and hence no negative length cycles!

2 Can order nodes using topological sort

(UIUC) CS/ECE 374 8 April 6, 2021 8 / 22



Algorithm for DAGs

1 Want to find shortest paths from s. Ignore nodes not reachable
from s.

2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn

2 can find shortest paths in topological sort order.

(UIUC) CS/ECE 374 9 April 6, 2021 9 / 22



Algorithm for DAGs

1 Want to find shortest paths from s. Ignore nodes not reachable
from s.

2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn

2 can find shortest paths in topological sort order.

(UIUC) CS/ECE 374 9 April 6, 2021 9 / 22



Algorithm for DAGs

for i = 1 to n do
d(s, vi ) =∞

d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj ) in Out(vi ) do

d(s, vj ) = min{d(s, vj ), d(s, vi ) + `(vi , vj )}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm!

(UIUC) CS/ECE 374 10 April 6, 2021 10 / 22



Part III

All Pairs Shortest Paths

(UIUC) CS/ECE 374 11 April 6, 2021 11 / 22



Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge

lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.

(UIUC) CS/ECE 374 12 April 6, 2021 12 / 22



Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).

(UIUC) CS/ECE 374 13 April 6, 2021 13 / 22



Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).

(UIUC) CS/ECE 374 13 April 6, 2021 13 / 22



All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge

lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).

Can we do better?

(UIUC) CS/ECE 374 14 April 6, 2021 14 / 22



All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge

lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).

Can we do better?

(UIUC) CS/ECE 374 14 April 6, 2021 14 / 22



All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge

lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).

Can we do better?

(UIUC) CS/ECE 374 14 April 6, 2021 14 / 22



Optimality substructure

Why don’t we use

dist(s, u) = minv [dist(s, v) + dist(v , u)] ?

What is a smart recursion?

(UIUC) CS/ECE 374 15 April 6, 2021 15 / 22



Optimality substructure

Why don’t we use

dist(s, u) = minv [dist(s, v) + dist(v , u)] ?

What is a smart recursion?

(UIUC) CS/ECE 374 15 April 6, 2021 15 / 22



A naive recursion

i

4

1

100

1

10
2 j

3

5

1
1

2

(UIUC) CS/ECE 374 16 April 6, 2021 16 / 22



A naive recursion

Running Time: O(n4), Space: O(n3).

Worse than Bellman-Ford: O(n2m), when m = O(n2).

1 It’s wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.

2 Idea: Restrict the set of intermediate nodes.

(UIUC) CS/ECE 374 17 April 6, 2021 17 / 22



A naive recursion

Running Time: O(n4), Space: O(n3).

Worse than Bellman-Ford: O(n2m), when m = O(n2).

1 It’s wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.

2 Idea: Restrict the set of intermediate nodes.

(UIUC) CS/ECE 374 17 April 6, 2021 17 / 22



A naive recursion

Running Time: O(n4), Space: O(n3).

Worse than Bellman-Ford: O(n2m), when m = O(n2).

1 It’s wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.

2 Idea: Restrict the set of intermediate nodes.

(UIUC) CS/ECE 374 17 April 6, 2021 17 / 22



A naive recursion

Running Time: O(n4), Space: O(n3).

Worse than Bellman-Ford: O(n2m), when m = O(n2).

1 It’s wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.

2 Idea: Restrict the set of intermediate nodes.

(UIUC) CS/ECE 374 17 April 6, 2021 17 / 22



All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) =

100

dist(i , j , 1) =

9

dist(i , j , 2) =

8

dist(i , j , 3) =

5

(UIUC) CS/ECE 374 18 April 6, 2021 18 / 22



All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) =

9

dist(i , j , 2) =

8

dist(i , j , 3) =

5

(UIUC) CS/ECE 374 18 April 6, 2021 18 / 22



All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) = 9

dist(i , j , 2) =

8

dist(i , j , 3) =

5

(UIUC) CS/ECE 374 18 April 6, 2021 18 / 22



All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) = 9

dist(i , j , 2) = 8

dist(i , j , 3) =

5

(UIUC) CS/ECE 374 18 April 6, 2021 18 / 22



All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) = 9

dist(i , j , 2) = 8

dist(i , j , 3) = 5

(UIUC) CS/ECE 374 18 April 6, 2021 18 / 22



For the following graph, dist(i, j, 2) is...

i

8

5

200

1

10

2
j

3

5

1

1

2

2

(A) 9
(B) 10
(C) 11
(D) 12
(E) 15

(UIUC) CS/ECE 374 19 April 6, 2021 19 / 22



All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

Base case: dist(i , j , 0) = `(i , j) if (i , j) ∈ E , otherwise∞

(UIUC) CS/ECE 374 20 April 6, 2021 20 / 22



All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k − 1) < 0 then
G has a negative length cycle containing k and dist(i , j , k) = −∞.

Recursion below is valid only if dist(k, k, k − 1) ≥ 0. We can
detect this during the algorithm or wait till the end.

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

(UIUC) CS/ECE 374 21 April 6, 2021 21 / 22



Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j) (* `(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i , j , k) = min

{
dist(i , j , k − 1),

dist(i , k, k − 1) + dist(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Running Time: O(n3), Space: O(n3).

(UIUC) CS/ECE 374 22 April 6, 2021 22 / 22



Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j) (* `(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i , j , k) = min

{
dist(i , j , k − 1),

dist(i , k, k − 1) + dist(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Running Time:

O(n3), Space: O(n3).

(UIUC) CS/ECE 374 22 April 6, 2021 22 / 22



Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j) (* `(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i , j , k) = min

{
dist(i , j , k − 1),

dist(i , k, k − 1) + dist(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Running Time: O(n3), Space: O(n3).

(UIUC) CS/ECE 374 22 April 6, 2021 22 / 22



CS/ECE 374: Algorithms & Models of

Computation

Graph Modeling
Lecture

(UIUC) CS/ECE 374 1 April 6, 2021 1 / 13



Part I

An Application to make

(UIUC) CS/ECE 374 2 April 6, 2021 2 / 13



Make/Makefile

(A) I know what make/makefile is.
(B) I do NOT know what make/makefile is.

(UIUC) CS/ECE 374 3 April 6, 2021 3 / 13



make Utility [Feldman]

1 Unix utility for automatically building large software applications
2 A makefile specifies

1 Object files to be created,
2 Source/object files to be used in creation, and
3 How to create them

(UIUC) CS/ECE 374 4 April 6, 2021 4 / 13



An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c

(UIUC) CS/ECE 374 5 April 6, 2021 5 / 13



makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c

(UIUC) CS/ECE 374 6 April 6, 2021 6 / 13



Computational Problems for make

1 Is the makefile reasonable?

2 If it is reasonable, in what order should the object files be
created?

3 If it is not reasonable, provide helpful debugging information.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

(UIUC) CS/ECE 374 7 April 6, 2021 7 / 13



Algorithms for make

1 Is the makefile reasonable? Is G a DAG?

2 If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

3 If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

1 Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.

(UIUC) CS/ECE 374 8 April 6, 2021 8 / 13



Part II

Application to Currency Trading

(UIUC) CS/ECE 374 9 April 6, 2021 9 / 13



Why Negative Lengths?

Several Applications

1 Shortest path problems useful in modeling many situations — in
some negative lengths are natural

2 Negative length cycle can be used to find arbitrage opportunities
in currency trading

3 Important sub-routine in algorithms for more general problem:
minimum-cost flow

(UIUC) CS/ECE 374 10 April 6, 2021 10 / 13



Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange
rate for converting one unit of a into one unit of b.
Questions:

1 Is there an arbitrage opportunity?

2 Given currencies s, t what is the best way to convert s to t
(perhaps via other intermediate currencies)?

Concrete example:
1 1 Chinese Yuan = 0.1116 Euro

2 1 Euro = 1.3617 US dollar

3 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ →
Yuan→ Euro→ $, we get:
0.1116 ∗ 1.3617 ∗ 7.1 =
1.07896$.

(UIUC) CS/ECE 374 11 April 6, 2021 11 / 13



Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length `(vi , vj) = − log(exch(i , j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a

shortest path in G from i to j . If d is the distance from i to j
then one unit of i can be converted into 2−d units of j .

(UIUC) CS/ECE 374 12 April 6, 2021 12 / 13



Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length `(vi , vj) =

− log(exch(i , j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a

shortest path in G from i to j . If d is the distance from i to j
then one unit of i can be converted into 2−d units of j .

(UIUC) CS/ECE 374 12 April 6, 2021 12 / 13



Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length `(vi , vj) = − log(exch(i , j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a

shortest path in G from i to j . If d is the distance from i to j
then one unit of i can be converted into 2−d units of j .

(UIUC) CS/ECE 374 12 April 6, 2021 12 / 13



Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length `(vi , vj) = − log(exch(i , j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a

shortest path in G from i to j . If d is the distance from i to j
then one unit of i can be converted into 2−d units of j .

(UIUC) CS/ECE 374 12 April 6, 2021 12 / 13



Reducing Currency Trading to Shortest Paths
Math recall - relevant information

1 log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · ·+ logαk .

2 log x > 0 if and only if x > 1 .

(UIUC) CS/ECE 374 13 April 6, 2021 13 / 13


	The Crucial Optimality Substructure
	Shortest Paths in DAGs
	All Pairs Shortest Paths
	graph-model-app.pdf
	An Application to make
	make utility
	Computational Problems


	Application to Currency Trading


